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  1. Quantum Language in Chemistry 

 
  
 
 
 
 
 
 
 

The concepts of material system and quantum state occupy a foundational place in 
quantum physical chemistry. The material system sustains quantum states. This 
statement implies a requirement for the material system to be present in the domain 
where quantum changes would take place. Thus, its presence is essential but its 
localizability is not an issue. It is on this foundations that one can construct 
quantum mechanical descriptions of processes sustained by physical, chemical, 
biochemical and other types materials. 

A material system is defined by the nature and quantity of its basic elements, 
e.g. number of electrons and nuclei in the case of electromagnetic materials (atoms, 
molecules, solids, aggregates,…); from a different perspectiva, sets of material 
systems relate to objects and things in laboratory (real) world. 

The concept of quantum state is central to quantum mechanics. It plays a 
foundational role in the sense that is a pure mathematical concept belonging to an 
abstract mathematical space, viz. Hilbert space. Vectors in Hilbert space represent 
quantum states. Changes of state are represented with operators mapping one state 
to another. 

To handle quantum states supported by material systems there is need for a 
procedure able to label them in definite ways. The symbol |label> stands for a 
quantum state whose name is “label”. A Hilbert space includes a countable infinite 
set of base states we designate for instance as {|j> | j=1,2,…}. The quantum state 
“label” is then given as a linear superposition over the base set: 

  |label> = Σj |j> <j|label>. 
The symbol <j|label> is a complex number characterizing the label-state in the 
basis set we have chosen somehow. The base set is fixed which means that any 
change of quantum state is to appear as a change in the set of complex numbers 
that we will call from now on as: amplitudes. 

Chemistry introduces structure as fundamental concept. Reantants and products 
are substances that are manipulated in laboratory space. To make contact between 
abstract space and laboratory space introduce inertial frame characteristic of the 
special relativity for reasons to be analyzed later on. The origin and orientation of 
such frame belongs to laboratory and we use this frame to introduce configuration 
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space coordinate; the dimension of such space is determined by the degrees of 
freedom introduced by the material system. 

At this level of theory, a material system is characterized by quantum states 
projected in configuration space, they are named as wave functions; this would 
include the way a material system can respond towards appropriate (quantum) 
external probes by showing specific changes in a quantum state. At one stage or 
another, models of probes used to modulate the state of a material system must be 
included in the theory. Photon-field quantum states are among commonest probes 
to material systems and for chemist this is essential because, for example, a thermal 
bath that is a special distribution of frequencies control kinetic and mechanistic 
issues for chemical reactions. All kinds of spectroscopy based on electromagnetic 
interactions enter the field interesting to quantum phys-chem. 

The material system being, by definition, an invariant to the extent its basic 
constitutive elements cannot change; it is a modification of quantum state that 
would allow for a theoretical understanding of change perceived at laboratory 
level. In particular, chemical evolution may lead to justify a concept of object, 
substance, and their production in laboratory world once mappings are built 
relating abstract evolution to material systems. 

The focus is on change. That is change of quantum state. Static aspects 
temporarily cede the place to process description. In a nutshell, specific processes 
elicit changes of quantum states affecting appearances of material systems when 
sensed in laboratory (real) world.  

However, if everything changes, there is no way to describe with respect to 
what such changes are being sensed. Thus, in Hilbert space there is to be found 
invariant elements as well. These elements form a base set in abstract space. The 
static (invariant) aspects provide the skeleton required to get at process 
descriptions. 

The language of quantum physics is designed to describe changes of states in 
general; in particular, of material systems. Physics, Chemistry, Biophysics, 
Biochemistry, or any other region of scientific inquire that conserve the elements 
defining its characteristic materiality, are concerned with process description at this 
fundamental level. An exposure, albeit brief, to quantum mechanics (QM) is 
required to the extent that this is the theoretical framework where processes can be 
properly presented. QM plays a role of grammar for the language. 

Getting into the QM field requires a mathematical training that is commonly not 
accessible to students in chemistry, biochemistry and molecular biology; even 
some practitioners may have limited knowledge of contemporary QM as an 
abstract mathematical framework. Note that the practical level is plagued with 
misunderstandings that can be relieved if we injects a sober dose of abstract QM. 
Thus, even if one cannot use grammar at a professional level, one can learn to 
speak and honorably write texts without detailed mastering language meanders.  
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 Let us go straight ahead and give a couple of basic elements that would enable 
us to give a presentation of the quantum linear superposition principle. Technically, 
quantum states belong to (or form part of) a linear vector space over the field of 
complex numbers; for more details wait for Chapt.2; just rudiments are given in 
what follows.  
 Use the symbols |Ψ, t> to stand out as a member of such a set with label (name) 
Ψ that is expected to change in time (t). For this Hilbert space, as stated above, one 
has a complete countable set of states serving the purpose of base states: {|j>} an j-
label identifies each base state it ranges from j=0,1,…,n,…; so that an arbitrary 
quantum state appears as a linear superposition in this base; a sum of terms that is 
also an element of the space.  

One can select an energy-based representation: {|j>}→{|εj>}; where a 
denumerable (countable) energy label is associated to each order index, εj; the 
energy origin may be arbitrary, only differences between states stands out as a 
quantity that can enter interaction processes; energy conservation laws can be 
implemented when the material system interact with external systems (fields).  

Energies as labels are positions on energy ladders with finite (variable) steps 
distances; again, the origin of the energy scale can be fixed arbitrarily. In an energy 
representation, the set of eigenvectors {|εj>} provides a base to expand arbitrary 
quantum states, e.g.: 
  |ϒ,t> → Co(ϒ,t) |εo> + C1(ϒ,t) |ε1> +… Cj(ϒ,t) |εj> + …= 
  Σ k=0,1,… Ck(ϒ,t) |εk> (1) 
The base set being fixed; the amplitudes represent the quantum state in the chosen 
base and the symbol Cj(ϒ,t) is a complex number that just emphasize that the set of 
amplitudes define the quantum state |ϒ,t>.  
 The abstract part of the scenario must be mapped to a laboratory side. Because 
the energy labels are just that, labels, they can be positive or negative; what really 
matter are differences between two of them. Taking a specific energy label, say k, 
that we name as root state, an absorption spectrum obtains from differences with 
respect to energy-labels ordered higher up in a ladder; the differences ΔEjk = εj - εk 
are positive and mapped to energy that can be exchanged with surroundings; 
conversely, an emission spectrum follows for energy-labels found below the 
chosen root state. Thus, at the end of the day, to speak of energy, there must be a 
source or sink to satisfy energy conservation. If we have it, this level of 
presentation corresponds to a borderline case (Fence). In the laboratory side inertial 
frames provide a mean to relate the abstract to the real sides of this scenario. This 
is a characteristic of quantum phys-chemical (phys-chem) situations. 
 For a given quantum state, the spectral response to external appropriate probes 
show non-zero intensity only from those base states that have non-zero amplitude.  
 In other words, one can activate a response via spectra rooted at a given energy   
if and only if its amplitude is (becomes) different from zero; the response sensed at 
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the laboratory may appear after a delay time from the initial state due to time 
evolution.  
 To accomplish the mapping in a general way, the quantum state must be 
normalized to one. This operation can be performed at the probing stage. In this 
way one can work all along with vectors instead of rays that are normalized 
vectors. 

The representation of a chemical process such as a keto/enol reaction will be 
embedded in {Cj(ϒ,t)}-sets of time dependent amplitudes. Quantum dynamics is 
just the study of the way amplitudes change in time. As we will show later on, a 
typical set of differential equations to get time evolution is given by: 

  ih dCk(ϒ,t)/dt = Σj Vkj(t) exp(iωkjt) Cj(ϒ,t) (2) 
The symbols mean: ωkj =ΔEkj /h = (εk - εj)/h is a frequency, Vkj is a coupling 
between base states |εj> and |εk> produced by an external probe (field); Σj is the 
symbol implying a sum over all base states |εj>; h is Planck’s constant with 
dimension of energy by time for the present case. The term dCk(ϒ)/dt is the rate of 
change in time of the k-th amplitude. Solving the set of equations for k=0,1,2,… 
one would get the amplitudes as a function of time. 
 

 

E&E-0 Energy representation  
In the energy representation the basis states are label by the energy eigenvalues: |εj>. These 
are fixed elements. Anyone among them can be the root of a spectral series, namely, 
transitions towards higher or lower energy states; for the hydrogen atom we are well aware 
of Balmer, Pashen, Pfund spectral series. Because (εk - εj)/h is a frequency, an external EM 
source can be coupled (as indicated in eq.(2)) with a frequency ω such that  
  Vkj(t) = Vkj exp(iωt)   (3) 
so that energy in the field is characterized by hω; this is real energy you might use to tan 
yourself if the frequency is appropriate. The factor Vkj is time independent, it represents the 
(complex) number <εj|V|εk> to be defined later on. 
 Observe that we refer to energy label and not energy level when indicating the origin for 
the base state one is probing. In this work, the system is assumed to be in a particular 
quantum state but no occupying a particular energy level. The amplitudes will tell us 
whether a given base state may be the origin for an interaction; if it is zero, then no 
response via that channel. It is the linear superposition that always makes sense and is 
probed with external fields or systems. 
 

Thus, the first step is the construction of a theoretical framework to determine 
amplitudes’ time dependencies. The quantum mechanics needed for our purposes 
shares the same mathematical basis as found in any good QM textbook. However, 
the emphasis is changed, so it takes some extra effort to incorporate some 
necessary mathematical language. This is presented in a way that can go into 
helping theoretical thinking for chemist, biochemist and (molecular) biologists. 
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1. Chemical change and Q-Language 

 
 

The graph of a chemical reaction purports a number of informative data to chemists, e.g. 
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Scheme (1.1) stands for a uni-molecular change from species A into B via 
transition structure AB#. The product B may be a dissociation asymptotic state or 
an isomer state (keto-enol case) or any species one can detect via experimental 
procedures.  
 At time to, concentrations [A]o, [B]o, [AB#]o are input data in a laboratory setup; 
in a simple case when [B]o=[AB#]o equals to zero, only reactant [A]o≠0 is present. 
k1, k-1 and k3 are rate constants that control concentrations change for the system in 
time, [A]t, [B]t, [AB#]t; these quantities are time dependent laboratory measurable.  
 There is a common, invariant element underlying eq.(1.1), namely, the analytic 
composition in terms of basic elements: number of electrons and nuclei; this is the 
matter content offering a common ground to introduce an alternative quantum 
description. Quantum states are sustained by the invariant material system. 
 Chemical (molecular) base states for the material system are identified with 
names or symbols e.g. |A>, |B> and |AB#>; this is a schematic presentation. A 
linear superposition over them stands for a quantum state and the time variations of 
amplitudes are traced back to magnitudes determined with analytical chemistry 
techniques; spectroscopic responses are of especial import. Note that pure A and B 
are identifiable by their spectra, namely, the way they respond to electromagnetic 
radiation for varied frequency ranges or by mass spectroscopic techniques or by 
any combination thereof. They have different spectral response albeit the same 
“constituent” elements; and the question is: How does the same set of electrons and 
nuclei put such different responses so that at the laboratory level they are 
identifiably as different objects? The question itself suggests that it is not the 
material elements as such that may sustain the differentiation into laboratory 
objects but there must be something else, namely, quantum states. 
 From the operational standpoint it is required that, at least, a clear difference 
of the quantum states should manifest so that characteristic spectral responses show 
up. The question becomes: Is there a relationship between chemical and quantum 
change epitomized as physical process echoed in Hilbert space? The answer is yes; 
a path leading to this response is presented in this book. 
 Note that by considering quantum states associated with specific responses (to 
external probes), the concept of object is no longer a primary element to the 
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theoretical description; here lies one of the difficulties to understand QM, so that 
one has to get used to it.  
 Quantum states are linear superpositions on specific base states (Cf.eq.(1)), the 
base set is invariant; to represent a physical change only the amplitudes of the 
linear superposition change. The base states form a complete set so that sets of 
amplitudes span all possible quantum states a material system can show; all 
possible chemistry is hence imprint in the space of quantum states. Observe that a 
quantum state is a foundational element of the theory thereby implying no 
definitions in terms of other concepts. 
 We move on examining via simple examples some fundamental concepts of 
quantum language (quantum mechanics). There will be no mathematical 
demonstrations, just basic concepts. 

 
 
1.1. Chemical versus quantum state concept: a model 

 
To an arbitrary chemical state in real space assign a quantum state in Hilbert space 
(H ) represented by the ket symbol: |Ψ,t>. The symbol |Ψ, t> names the quantum 
state at time t; it stands for the arbitrary chemical state, the symbol Ψ, reminds us 
of its origin i.e. the way it was reproducibly generated in the laboratory; we are 
talking about the same material system. Here, label t is an element in the real 
number axis with all associated topologic properties; it plays the role of time. The 
inclusion of time in the symbol of quantum state underlies the fact of a possible 
ordered change of state as a process goes on; in this space, time inversion may lead 
to an allowed symmetry. To relate this parameter to a laboratory clock there is need 
for special mappings because in real space time inversion is not a feasible 
operation; further more one address here time lapses as measured by a clock, 
differences between two marks on the axis of time. 
 As note above, Hilbert space has the structure of a linear vector space over 
the field CC of complex numbers. If |Ψ1> and |Ψ2> are two vectors of H, and C1, C2 
two arbitrary complex numbers, then the sum C1|Ψ1> + C2|Ψ2> corresponds to 
another element of H, say |ϒ>; thus, here is a map between ket |ϒ> and the ordered 
pair C1, C2 in the given fixed base; for this reason one writes the amplitudes with an 
argument, C1(ϒ), C2(ϒ) to emphasize such connection. The set of all these linear 
superpositions form a linear vector space also. This latter set is a dual space (or has 
the structure of); it is sometimes called simple dual space to differentiate it from a 
conjugate dual space to be introduced later on. Note that, in our context, to serve 
the purpose of base states, |Ψ1> and |Ψ2> must be time independent thereby 
endowing the amplitudes with the time dependency: C1(t), C2(t) or C1(ϒ,t), C2(ϒ,t). 

In eq.(1.1) the symbols A, AB# and B label reactant, transition state and 
products; take them as names with the property to cover the same 1-system in 



 CHAPTER 1. QUANTUM LANGUAGE IN CHEMISTRY 
 

7 

terms of basic elements. Consider the base states with symbols: |A>, |B> and 
|AB#>, where chemical labels identify three generic base vectors; implicit is the 
fact covered by these symbols, namely, to stand for a specific energy ladder but we 
will stick to a simplified notation.  By now you know that an arbitrary quantum 
state is given by a linear superposition over base vectors: 
  | Ψ, t > =  
  CA(Ψ,t)|A>+CB(Ψ,t)|B>+CAB#(Ψ,t)|AB# >  (1.1.1) 
Determining these numbers, i.e. the amplitudes, define the quantum state.  
  

E&E.1.1-1 Alternative notations 

Equation (1.1.1) can be written with alternative symbols to emphasize the difference 
between amplitudes and base states.  
 Define a row vector with the base set elements: (|A > |B > |AB# >) the object has 
dimension 1x3, i.e. one line and three columns. The column vector (CA(Ψ,t)  CB(Ψ,t)  
CAB#(Ψ,t))t = [CA(t) CB(t) CAB#(t)]  with dimension 3x1, three lines and one column, is used 
to define the scalar product (1.1.1): 
  (|A >  | B >  |AB# >)⋅(CA(t)  CB(t)  CAB#(t))t =  
  (|A >  | B >  |AB# >)⋅[CA(t)  CB(t)  CAB#(t)] = 
  | Ψ,t >   (1.1.1’) 
In this manner, the difference between the mathematical object formed with the amplitudes 
and base set elements is underlined. In terms of dimensions: 1x3 times 3x1 results in a 
Hilbert space element that stands for the abstract quantum state |Ψ,t>; Cf. Eq.(1.1.1’). The 
base states are fixed, chosen in one way or another that is convenient to handle a particular 
system, while the amplitudes would sense changes of quantum states related to specific 
material systems. We select the base set based on the particular measuring devices at hand. 
A quantum state is defined the row vector where all amplitudes including those that might 
be zero at a given time must be included. So we need to bear in mind that column vector 
(CA(Ψ,t)  CB(Ψ,t)  CAB#(Ψ,t))t as a whole is the key mathematical construct not each 
amplitude separately. 
 

The complex number CX(t) is mapped on to a real number by taking the square 
modulus |CX(t)|2. A quantum state is hence normalized at all times (

! 

" t) if equation 
(1.1.2) holds: 
  |CA(t)|2 +|CB(t)|2 +|CAB#(t)|2  = 1, 

! 

" t (1.1.2) 
Using the analogy of vectors in real 3-space, the surface of a ball of unit radius will 
be the locus of all possible vectors with length one. The quantum states are located 
on a hyper-sphere of unit radius in Hilbert space.  
 The normalization condition concerns a QM understanding of processes. If one 
amplitude changes for some reason, fulfilment of eq.(1.1.2) enforces the change of 
at least one remaining amplitude to compensate for the variation keeping 
normalization equal to one. Note, however, that albeit norm is conserved, 
projections of the quantum state along the base vectors can be changing in time 
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thereby eliciting a (chemical) change. Again, the base vectors must remain 
unchanged; they provide a reference frame in Hilbert space. 
 For a concise presentation of Hilbert space consult the web address: 
http://en.wikipedia. org/wiki/Hilbert_space. 
 

E&E.1.1-2 Material system concept 

To discuss the concept of material system let us select one showing 1 carbon, 1 oxygen and 
two hydrogen nuclei; define the atomic number vector: Z = (ZC ZO ZH ZH) = (6  8  1  1)  
making for +16 positive charge and select 16 electrons; the global system is electrically 
neutral. Also, nuclear spins can be introduced: I = (IC IO IH IH). A = (AC AO AH AH). The 
material system sustains infinities of quantum states among which there are chemical 
quantum states. Take species A to be formaldehyde H2CO with a corresponding base state 
label |H2CO >; species B can be H2 + CO, base state label |H2 > |CO >, namely a direct 
product of asymptotic states; species AB# maps, for instance, to a lowest energy n→π* 
excited state of formaldehyde, so one takes base state label |H2CO, n→π* >.  

For this Z-vector system, there are many more possible base states. For instance: water 
plus carbon atom, |H2O>|C>; hydrogen atom plus H-C-O; hydrogen atom plus C-O-H; and 
much more. In a 1-system representation, a complete base will show them all, including 
ionized states with electron states in a given continuum. 

Here, for the sake of simplicity, we retain three root states, the remaining base states 
belong to its orthogonal complement; they can implicitly be taken into account. The 
quantum states belong to the 1-system represented by 16 electrons and the nuclear species 
already indicated. These states encompass all possible chemistry in Hilbert space. 
Equations (1.1.1) and (1.1.2) albeit truncated are valid for single systems called a 1-system 
here; the number of electrons and nuclei is conserved only the quantum state can change. 
 

In chemistry, reagent (analyte, substance) concentrations as a function of a 
laboratory time enter kinetic descriptions. Kinetic equations relate to a large 
number of 1-systems, usually of the order of Avogadro number N0. Let N be the 
number of non-interacting 1-systems in a volume V (number density=N/V, and put 
V=1), the quantity N|CA(to)|2 would be associated to the relative intensity response 
from the A-root-state. And that’s it. The spectral response in intensity of the 
material system are modulated by N|CA(to)|2 which is a mixed quantity: N is the 
number of copies of 1-systems and |CA(to)|2 a function of amplitudes coming from 
Hilbert space. 

The temptation might be great to take for instance N|CA(to)|2 as the 
concentration in the laboratory (real world) of A-species. But you have to introduce 
two extra hypotheses to do this conversion. First, it is necessary to introduce a 
particle model and, second, a statistical approach. The particle model requires that 
each element of the N-copies be in one and only one base state, namely, CA(t)=1 
for one copy, CB(t)=1 for another copy and CAB#(t)=1 for still another one. Thus, 
counting the number of copies having CA(t)=1, say NA(t), etc., one imposes the 
equality |CA(t)|2 = NA(t)/N, |CB(t)|2 = NB(t)/N, and |CAB#(t)|2 = NAB#(t)/N. This is 
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what is called a population model. In this framework, N|CA(to)|2⇔[A]o and prepare 
for a case where N|CB(to)|2 ⇔[B]o = 0 and N|CAB#(to)|2 ⇔ [<AB>#]o = 0. This is a 
way chemists may think to start running system (1.1).  

In Hilbert space there are no objects, at time to, the row vector ( 1  0  0 ) stands 
for the quantum state of the material system, not for the molecular species A. For 
quantum states no pictures are required, base states can be mapped through the 
Fence to chemical eigen states that for chemists may convey some new valuable 
information. This aspect is not under study yet. 

Possibilities to sense amplitudes are always present. From zero amplitude at a 
given time it may develop a non-zero value at later times that will be characteristic 
of specific processes. For a given material system, quantum states associated to all 
possible chemical species are always there in Hilbert space. All possible chemistry 
finds its representation in the quantum states for that 1-system. In Figure 1, a 
simple model is sketched. 

The model system crucially depend upon the quantum coupling between base 
states |A> and |B> accomplished via the transition (excited) state spectra, |AB#>. 
At a given value of the reaction coordinate, the quantum state is formally given by 
(CA(x) CB(x) CAB#(x)). Thus, if there were zero coupling, and the system was 
prepared as reactant (1  0  0), the pattern of amplitudes would be a straight line 
intercepting at 1 and for state (0  1  0) a straight line with  interception at CB=0.  

 
Figure 1. 
Quantum model for a chemical reaction related to eq.(1.1.1); amplitudes in absolute value are plotted 
as a function of a reaction coordinate x. At each value of x, the quantum state is normalized to unity. 
For x negative, the system is dominated by the spectrum of |A>. At x=0 the interaction leading to a 
coupling of these generic quantum states start changing the amplitudes of reactant and product. In this 
model, the amplitude of the transition state increases continuously until getting at a maximum; at this 
place reactant and product amplitudes cross just above the amplitude of |AB#>. Thereafter, the 
amplitude of the product |B> increases while both the reactant and transition state go down. (Figure 
adapted from our work with Prof.G.A.Arteca). 
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Now, introducing a specific coupling such as the one elicited by Fig.1, the 
amplitudes appear to change in a narrow region usually called bottleneck. See 
Sect.1.4 for further details. 

Another aspect of this model: the reaction coordinate specifies (somehow) the 
coupling with external field to the reactant system. It can be an electromagnetic 
field (laser) tantamount to a photochemical reaction; or it can be, a bath of 
microwaves or a thermal bath at a specified absolute temperature. Yields can in 
principle be modulated if the reaction coordinate is forced to attain specified values 
inside the bottleneck region. 

Absent from the presentation of the model are aspects related to the spectrum 
that will be examined later on. But, as suggested above, the scheme encompasses 
all type of chemical processes you may think of for electromagnetic materials. 

How do we identify the states |A>, |B> and |AB#>? Chemists know how to do 
this with the help of characteristic spectra related to each one of them. This is an 
invariant property of the material system under study. The quantum level serving to 
generate series of excitations (spectrum) is called root state or parent state (e.g. 
Balmer and Lyman series for the hydrogen atom have their root states); whenever 
necessary, part of the spectral states are incorporated in the Hilbert subspace, 
otherwise they stay in the orthogonal complement. 
 Why do we need amplitudes?  
 The answer is simple:  
 

If the root state shows zero amplitude in the quantum state vector at all times, there will be 
no response in intensity rooted at that base state. 
 
Measurements relying on the square modulus of amplitudes are said to be in the 
intensity regime, i.e. related to concentration or event-counting (clicks). 
Measurements done in amplitude regime address the whole quantum state. The 
novelty of chemical quantum dynamics resides in the coherent state represented by 
linear superpositions. 
 Consider a simple thought experiment: at time to the chemist switch the 
spectrometer tuned to the spectral response of base state |B>, what one would 
expect as a result? An answer elaborated with the help of Fig.1 would be as 
follows: start from state |A>, there will be no detection (response) as long as the 
relevant amplitude at root state |B> remains zero or below sensitivity of the 
recording apparatus. In the reaction coordinate (x) range below zero |CA| is almost 
equal to one; note that for this model |CC| starts increasing before than |CB| which 
indicates that an early coupling with channel A is active; there after |CC| reaches a 
maximum an begins decreasing as |CB| rapidly increases until getting at a plateau 
|CB|=1. 
 

Chemical change for 1-system expresses as a change of quantum state:  
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All chemistry develops in a 1-system. 
  

This is a fundamental difference with standard approaches. Objects (substances) 
are replaced by quantum states. For the opposite process, from quantum states to 
objects, one speaks about decoherence of the ensemble of 1-systems. The 
phenomenon of coherence/decoherence lies at the heart of chemical change seen 
not only in the particle model. 
 Implicit in the preceding statements is the fact that asymptotic base states are in 
one way or another included. This would grant descriptions of association/ 
dissociation reactions, entanglement/disentanglement processes, etc; find more on 
these issues in following chapters. 

The fundamental outcome, when focus is onto the concept of quantum state, is 
that it permits working with only one copy of the material system. The infinite 
dimensional space that sustains the infinity of possibilities (base states) of a one 
material system suffices to handle any process. Connection with laboratory work 
obtains for cases involving any number of non-interacting copies of 1-material-
system for which normalization is now equal to the number of copies. The analog 
of a Gibbs ensemble obtains by multiplying with the number N; the normalization 
constant equals now N, the number of copies that might be representing a system 
with response function that may be detectable in laboratory space; the product 
N|CB(t)|2 is usually taken as the number of copies of the system in state |B>, the 
interference effects are averaged out to zero (decoherence). This forms a particle 
model to the quantum system we have been examining. For the thermodynamic 
limit, namely, N/V finite density when the number of copies N →∞ and the volume 
V→∞; the 1-copy approach permits constructing quantum thermodynamics. 

Thus, when the number of 1-systems is of the order of Avogadro number, then 
it is practical to work with kinetic descriptions involving rate constants. However, 
keep in mind that the actual mechanism is quantum mechanical. 
 
 
1.2 From chemical to quantum time evolution 
 
The key result for a 1-system quantum state is: chemical change can be followed 
up via time evolution of the amplitudes that at the Fence will be mapped via 
measurements procedures. Times in Hilbert space and at the Fence (laboratory) are 
not the same. Pure mathematical construct in the former, at the Fence it is the 
subject of measurement endowing time with properties that are not shared by 
abstract time. 
 Let us obtain a mathematical expression for time evolution in Hilbert space; 
a mapping between two elements of Hilbert space is designated as an operator. 
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Thus, introduce a time evolution operator 

! 

ˆ U (t,to) that when acting on the quantum 
state at a given marked time, e.g. |Ψ,to> shift the origin so that one has the 
definition: 
  |Ψ,t> = 

! 

ˆ U (t,to) |Ψ,to>  (1.2.1) 
The operator 

! 

ˆ U (t,to) executes a time translation from a quantum state at initial time 
to up to one at time t in an inertial frame; so long no measurement or probing is 
carried out, all possibilities offered are expressed by the amplitude |Ψ,t>. Again, 
the operator is a rule (map) connecting elements of a given vector space, |Ψ,t> ← 
|Ψ,to>, this is the meaning of eq.(1.2.1). We still have a long way to go to construct 
a representation of, but what is of interest right now is the construction of a formal 
differential equation for this mathematical object. Although it is not required that 
you master all aspects, it is useful to follow the path from a simple definition to the 
construction of the equation directing the change. 

In Hilbert space, time is a (continuous) parameter used to label base states; note 
that in this particular case the t-label is not a time measured in a laboratory even if 
one might feign a “clock” to be attached to an inertial frame used to project and 
obtain |t> base vectors. Clocks belong to the Fence that is the place where energy 
and momenta are conserved while the quantum 1-system interacts with an external 
field. Keep in mind this qualitative difference to avoid surprises. While one can 
explore the symmetries related to time inversion in Hilbert space, there will be 
serious operational problems to make sense in real space. 

The operator 

! 

ˆ U (t,to) must leave the norm of the state vector unchanged. This 
defines a unitary operator. To calculate the norm, the dual conjugate space is 
introduced now. 

 
E&E.1.2-1 Dual conjugated space 

The elements of the dual conjugate (dc) space are designated by “bras” symbols: <A|, <B|, 
< AB#|, <Ψ,t|. There is a one-to-one map between bras and kets; if <Z| is an arbitrary bra 
there always exists a dual conjugate ket written as |Z> such that the number standing for the 
scalar product <Z|Z> is a real number: This scalar product is the norm of the vector |Z>. 
The symbol |Z><Z| is an operator that permits finding the component of a quantum state 
|Φ> along the vector |Z>: i.e. (|Z><Z|) |Φ> yields  <Z |Φ> |Z> where the factor in front of 
vector |Z> is a complex number featuring the projection of the quantum state  | Φ > along 
this axis. 
 If we have two states |Z> and |Z’>, then the mapping <Z|Z’> is a complex number 
and <Z’|Z> = (<Z|Z’>)*, where the star (*) means complex conjugation. The scalar product 
between vectors |Z’> and |Z> is given as <Z|Z’>. Two different vectors that have scalar 
product equal zero are said to be orthogonal: <Z|Z’>=0+i0. 
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E&E.1.2-2 More definitions 

The dual conjugate space is a linear vector space. This means that the equivalent to 
eq.(1.1.1) reads as: 
  <Ψ,t| = CA(Ψ,t)* <A| + CB(Ψ,t)* <B| + CAB#(Ψ,t)* <AB# | = 

  

! 

A B AB#( )•

C
A

*

C
B

*

C
AB #

*

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

  (1.1.1’) 

The dual-conjugation operator transpose and complex conjugate the given mathematical 
object. Now the mapping from one space, say bra-space, on to the complex numbers is 
formed by a scalar product of the kind:  
 <Ψ,t|X> = CX(t)*   (1.2.2) 
Here, CX(t)* is the complex conjugate of the number CX(t) as indicated in eq.(1.1.1’) and 
we see that functionally depends upon the quantum state it is assumed to represent: 
CX(Ψ,t).  

The norm of a base vector |X> is just the scalar product with itself: < X|X> = NX; base 
vectors are usually taken normalized to unity (NX=1); sometimes to a different measure (see 
below).  

The real number |CX(Ψ,t)|2 = <Ψ,t|X> <X|Ψ,t> tells how large is the amplitude at base 
state |X> in the quantum state |Ψ,t>; it signals the possibility the system has to put a 
response when shining frequencies serving the purpose of identification of the 
corresponding root state; in this case |X>. In other words, it is related to the cross section 
shown by the system with respect to the channel |X>; this is a common name for the real 
number |CX(t)|2.  
 

 
Operators acting on the dual space are symbolized with a dagger super index acting 
as: <Ψ,to|

! 

ˆ U 
†(t,to) which tells us the result is <Ψ,t|. We form the scalar product of 

this vector by putting side by side <Ψ,to|

! 

ˆ U 
†(t,to) to 

! 

ˆ U (t,to) |Ψ,to> so that: 
  <Ψ,t|Ψ,t> = <Ψ,to|

! 

ˆ U 
†(t,to) 

! 

ˆ U (t,to) |Ψ,to> (1.2.3) 
Because we want the norm to be conserved, i.e. <Ψ,t|Ψ,t> = <Ψ,to|Ψ,to> it must be 
true that: 
  

! 

ˆ U 
†(t,to) 

! 

ˆ U (t,to) = 

! 

ˆ 1    (1.2.4) 
The unit operator

! 

ˆ 1  is given as:

! 

ˆ 1 |X> = |X>. Operators sharing property (1.2.4) are 
known as unitary operators. They are norm-conserving operators. 
 Some continuity properties can be mentioned. Thus, for  
   Limt→t’ 

! 

ˆ U (t,to) = 

! 

ˆ U (t’,to) (1.2.5) 
In particular, if t has as a limit to, then Limt→to 

! 

ˆ U (t,to) = 

! 

ˆ U ( to,to) = 

! 

ˆ 1 . 
 Note again that the symbols |Ψ,to> and |Ψ,t> do not stands for things 
constructed with the elements of the material object but relate to the concept of 
(quantum) state the material system may be sensed by appropriate mappings 
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(measurements). While both states |Ψ,to> and |Ψ,t> are not the same, they originate 
from the same abstract state |Ψ>, indicated by capital Greek letter, Psi label. One 
has to have an initial state to start propagating it. 
 
 
1.3. Quantum dynamics 

 
We need to move from the formal definition, eq.(1.2.1), to a differential equation 
allowing us to calculate the evolution operator. This is done below. The time 
dimension is assigned to the t-parameter, consequently, the conjugate variable has 
energy dimension. 
 

 

1.3.1. Time dependent Schrödinger equation 
 

We show below that time evolution of quantum states is determined by the 
Schrödinger equation: 
   (i  

! 

h ) ∂|Ψ,t>/∂t = 

! 

ˆ H  |Ψ,t>  (1.3.1.1) 
The operator 

! 

ˆ H  stands for the system Hamiltonian. The Dirac relativistic equation 
and Klein-Gordon equation in their “Hamiltonian” form maintain the same 
structure (Cf.Chapt.8). So much for symbols, one can now skip E&E.1.3 below and 
continue until the end of this section. 
 
E&E.1.3. Derive the form of the time dependent equation 1.3.1.1 
The form of Schrödinger equation follows from mathematical properties assigned to the 
time evolution operators after four steps: 
 1) 

! 

ˆ U (to,to) = 

! 

ˆ 1 . This property is logically consistent with the definition eq.(1.2.1).  
 2) Then expand 

! 

ˆ U (to+δt, to) to linear terms in δt: i.e. 

! 

ˆ U (to+δt, to) = 

! 

ˆ 1 - i 

! 

ˆ A δt, for any 
arbitrary to. The infinitesimal time displacement δt permits a Taylor-like expansion of 

! 

ˆ U (to+δt, to); note the implied continuity property: limδt→0

! 

ˆ U (to+δt,to) = 

! 

ˆ U (to, to) for all to.  
Now look at properties following from unitarity:  
 3) Construct the product 

! 

ˆ U 
†

! 

ˆ U . To this end use the result of point 2): 
   

! 

ˆ U 
†(t+δt,to) 

! 

ˆ U (t+δt,to) = (

! 

ˆ 1 + i

! 

ˆ A 
† δt) (

! 

ˆ 1 - i 

! 

ˆ A  δt) = 
 

! 

ˆ 1 + i (

! 

ˆ A 
† - 

! 

ˆ A ) δt + O(δt2)  (1.3.1.2) 
According to eq.(1.2.3) the result of eq.(1.3.1.2) must be equal to

! 

ˆ 1 , the unit operator. One 
concludes that the operator

! 

ˆ A  must fulfill the identity: (

! 

ˆ A 
† -

! 

ˆ A ) = 

! 

ˆ 0 . An operator that is 
equal to its transpose-complex-conjugate is a Hermitian operator.  
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 So we have that 2) is true if operator 

! 

ˆ A  is Hermitian. The dimension of 

! 

ˆ A  must be 
canonically conjugate to time, this simply correspond to energy; such operators are known 
as Hamiltonians and use the symbol 

! 

ˆ H  for that. The evolution operator 

! 

ˆ U  has no 
dimensions, and this is the moment to introduce the universal Planck constant h divided by 
2

! 

" :   

! 

h  that has dimension of energy by time. We get the fundamental equation: 
  

! 

ˆ U (t+δt, t) = 

! 

ˆ 1 - (i/  

! 

h ) 

! 

ˆ H  δt (1.3.1.3) 
The Hamiltonian operator is a generator for time displacement. 
 The operator of interest now is 

! 

ˆ U (t+δt, to) that would do the job to bring the quantum 
state from initial time to up to time t. Let us seek now for actual translations along the time 
axis by using: 
 4) The (group) property of time evolution operators:  
  

! 

ˆ U (t+δt, to) =

! 

ˆ U (t+δt, t) 

! 

ˆ U (t, to)  (1.3.1.4) 
Introducing eq.(1.3.1.3) in this identity one gets:  
    

! 

ˆ U (t+δt, to) = (

! 

ˆ 1 - (i/  

! 

h )

! 

ˆ H δt)

! 

ˆ U (t, to).  

Taking the limit δt→0 and ordering the terms, (

! 

ˆ U (t+δt,to)-

! 

ˆ U (t,to))/δt =-(i/  

! 

h )

! 

ˆ H 

! 

ˆ U (t,to), 
one gets a fundamental equation concerning the time evolution operator: 
    (i  

! 

h ) ∂

! 

ˆ U (t, to) /∂t = 

! 

ˆ H 

! 

ˆ U (t, to)  (1.3.1.5) 
This is the time dependent Schrödinger equation for the operator 

! 

ˆ U (t, to).   
 If we make this operator equation to act on the initial quantum state |Ψ,to> formally, 

Schrödinger equation obtains: (i  

! 

h ) ∂

! 

ˆ U (t,to) |Ψ,to>/∂t = 

! 

ˆ H 

! 

ˆ U (t,to) |Ψ,to>.  To see this more 

clearly remember that 

! 

ˆ U (t, to) |Ψ,to> = |Ψ,t>. 
 
The key to time evolution of a quantum state resides in the construction of 

! 

ˆ U (t, to) 
by solving eq.(1.3.1.5). This implies knowledge of the Hamiltonian operator.  

Time independent Hamiltonians are considered first. Thereafter, time dependent 
ones are discussed. 
For time independent 

! 

ˆ H  Eq.(1.3.1.1) can be separated into two coupled equations: 
    

! 

ˆ H |Ψ> = E |Ψ>    (1.3.1.6) 
 Because 

! 

ˆ H  is Hermitian the eigen value E is a real number. The time dependent 
part reads: 
    (i  

! 

h) ∂|χ,t>/∂t = E | χ,t>  (1.3.1.7) 
Be careful, albeit E has energy dimension, it is not directly attached to the energy 
of the material system; in abstract Hilbert space it is a constant separating the terms 
of (1.3.1.1). The solutions have the form: | χ,t> → exp(itE/  

! 

h). 
It is worth notice that construction of a formal Schrödinger equation involves 

the time parameter only. The space coordinates are not entering the formal process. 
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1.4. Basic chemical quantum dynamics 
 
 
At the Fence, it is not the absolute value of the energy levels that matters but their 
difference. The difference between two eigenvalues is an amount of energy that the 
material system can give or receive from the exterior. This is the way atomic and 
molecular spectra have been rationalized. Further more, in agreement with Planck’s 
discovery, the difference Ek- Ek’ corresponds to an amount of energy the material 
system can exchange with the surroundings. This energy can be made equal to 
  

! 

hωkk’ where ωkk’ is the frequency of an electromagnetic radiation; Ek- Ek’ =   

! 

hωkk’, 
this corresponds to Bohr’s postulate. The formalism is made more definite by 
including the source of energy required to change the quantum state, otherwise, 
each base state is multiplied by a time dependent phase function exp(i Ekt/  

! 

h) and 
no change is detected; there is no effective change of amplitudes in square 
modulus. The total Hamiltonian should include the mechanism allowing for 
transition among the chosen eigen states. Moreover, the material systems we 
talking about are defined by their charge, mass and spin. The linear momentum of a 
charge is partitioned between the mechanical term and the electromagnetic field; as 
a matter of fact, the charge system is not separable from transverse electromagnetic 
potentials, A. For this reason, the interaction operator in a semi-classical picture 
will contain the term (e/c)(

! 

ˆ p  . A + A . p̂ ); to simplify the discussion let us take the 
form, A = nAcos(ωt), for a field with frequency ω, direction n and intensity 
A. The field contains at least the equivalent one photon energy  

! 

hω to interact 
with the material system. 
 

We can now move back to consider the initial problem related to eq.(1.1). Take 
a model where the Hamiltonian operator is separated into a molecular term 

! 

ˆ H M 
and a coupling term 

! 

ˆ 
V =

! 

ˆ H -

! 

ˆ H M. The choice is made so that the base states are 
eigen states of 

! 

ˆ H M with energy eigen values EA, EB and EAB#, 
  

! 

ˆ H M|A> = EA|A>;  
  

! 

ˆ H M|B> = EB|B>;  
  

! 

ˆ H M|AB#> = EAB#|AB#>  (1.4.1) 
Vibration levels are implicit and a few of them are signaled in Scheme I as EAo, EAn 
and EBm. 

For the sake of simplicity <A|

! 

ˆ V |A> = <B|

! 

ˆ V |B> = <AB#|

! 

ˆ V |AB#> = 0. 
Moreover, <A|

! 

ˆ V |B> = ZA,B = 0 which means that no direct transitions between 
states of A and B are allowed.  

Non-zero matrix elements are for <A|

! 

ˆ V |AB#>=ZA,AB# and <AB#|

! 

ˆ V |B> = ZAB#,B 
≠0. This choice opens the possibilities for the change of chemical state that become 
under control by the quantum transition state, | AB#>; this means that in 
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eq.(1.3.3.5) first order terms are nil, the evolution operator is controlled by second 
order terms and higher. These provisos define the elements of a reactant model. 
The model EA<< EB< EAB# corresponds to an endothermic-like reaction. 
 In Scheme I, the amplitudes as a function of an external energy parameter E 
can be obtained as solutions to the secular equation indicated in the upper inset. 
Changes of E are measured from the lowest energy level: E = EAo + ΔA; this 
quantity represents energy drawn from external sources or deposited into external 
systems as the case may be. For the present model it plays the role of a “reaction 
coordinate”. 
 For non-resonant situations the amplitudes are given by equations: 
 

a)   |CA(ΔA)| = ZA,AB# CAB#(Δ A)/|(ΔA - EAB#)|;  
b)   |CB(ΔA)| = ZAB#,B CAB#(ΔA) /|(EB-ΔA)|;  

      c) |CAB#(ΔA)| = { |ZA,AB#|2/( ΔA - EAB#) 2+ |ZAB#,B|2/( ΔA -EB) 2}1/2.     (1.4.2) 
 
The structure of equations (1.4.2) show that the amplitude |CAB#(ΔA)| controls the 
possible values of the amplitudes at root states |A> or |B>. To put some amplitude 
at product root state it is necessary that the amplitude at the transition state 
becomes different from zero.  

The model emphasizes the role of the transition state in a way differing from 
simple energy discussions. As expected from the evolution operator, amplitude in 
modulus, |CAB#(ΔA)|, depends on the couplings squared. 

Consider the case where the coupling |ZAB#,B|2 corresponds to a “forbidden” 
transition, its numerical value will be smaller than |ZA,AB#|2 in the case that this 
latter were an “allowed” one and take the reaction in the opposite direction, i.e. 
prepare the initial quantum state as (0  1  0). The reaction B → A is exothermic and 
one would expect a rapid conversion, i.e. increase of amplitude at |A> due to 
favorable energy gap.  Nevertheless, and contrary to energy expectations, with the 
quantum conditions defined already the chemical reaction is expected to run slowly 
for at least two reasons:  
 i) The energy gap EAB#-EAo is too large so that a direct transfer with 
|CAo(ΔA=EAB#)|≠0 is unlikely;  
 ii) The amplitude CAB#(ΔA= EAB#-EB0) is bound to be very small as indicated 
by case c) in eq.(1.13). The analysis is of course very simple but it serves a 
pedagogic purpose. 
 Experimentally, there are a number of cases showing such behavior and an 
explanation may be found following the present line of thought. 
 Consider now the endothermic direction: A→B in more detail. In the scheme 
we have singled out a few vibration (rotation) energy levels. To avoid complicated 
formalisms we study couplings starting from specific vibration states, equations 
(1.13) can easily be adapted for each case. 
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There is one way to experimentally change the energy gaps that is well known 
to chemists and physicists alike.  Transform external energy into internal energy. 
The parameter ΔA can be used for this purpose. 
 Let us control some responses from this model. For ΔA << EB << EAB#, the 
amplitude |CAB#(ΔA)| would be negligible due to the large denominators in 
eq.(1.4.2). Thus, if the system was prepared as (1 0 0 ). i.e. CA(to) = 1, the coupling 
to the quantum system is not going to change the initial amplitudes. The system 
stay put. 
 

 
Apparently, the system A must be energy activated. Take ΔA below the energy gap 
EB the amplitude |CAB#(ΔA)| may take on values different from zero; the size of Z2 
controls the actual value. But now remember the reaction actually taking place at 
the Fence requires energy conservation; this situation in real space prevents a non-
zero amplitude at root state |B> that could be translated into actual population; a 
decoherence process. We complete the model with this experience. A simple rule: 
Non-zero transition amplitude requires a non-zero density of states at the outgoing 
state (|B>-channel here). For our model, any energy level above the ground state of 
channel A but below energy of channel B will never “face” a quantum base state of 
|B>; the density of states at the outgoing channel is hence zero and no time 
dependent conversion of amplitude in the relevant A-state will be zero. In the 
language of laboratory, you have to pay the energy difference between reactants 
and products in real (chemical) space. Therefore, at point E1 signal by an arrow in 
Scheme 1, there is no mixing of states leading to product state (0 1 0). 
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Activation must put the energy pointer ΔA above EB to expect a coupling that 
eventually would lead to products, i.e. (0 1 0) in Hilbert space. Consider the value 
EAn corresponding to a vibration-rotation level chosen in such a way that there is a 
corresponding level EBm the amplitude |CB(ΔA= EAm)| will be different from zero if 
and only if the coupling with the transition state above leads to a non-zero 
amplitude there. There might be a linear superposition with finite amplitude at the 
excited vibration state in the product channel. If a mechanism of relaxation towards 
(0 1 0) is operating, thence a response of the reaction products can be obtained. 

Observe that were |ZAB#,B|=0, i.e. a forbidden transition, then the system will 
remain in the initial state at all times (if forced to follow this mechanism !). 

To make contact with real chemistry, we have to move from abstract space to 
the Fence. Consider the case where the energy is being transferred at constant 
volume V. This can be used to climb the vibration energy ladder until a threshold 
value obtains where a non-zero |CAB#(ΔA)| shows up. Seeing from the external 
world, the energy density is increasing. In real world this is equivalent to an 
increase of pressure, p = E/V. Remind that relative kinetic energy between pairs of 
reactant systems increases with pressure so that we can relate this situation with 
Lindemann-Hinshelwood (LH) mechanism.  

In LH-mechanism the activation energy comes from collisions between 
molecules: A+A turn into A*+A. The rate of de-activation competes with the rate 
at which product starts being detectable. The simple kinetic scheme of eq.(1.1) 
must be supplemented to take into account the need for activation and deactivation 
processes; we use M as the activating species, the energy withdrawn from M is 
indicated as sub index: 

  

! 

A

+

M

k+1
" # " 

k$1
% " " 

A
#

+

M
cold

k+2
" # " 

k$2
% " " 

AB
#

k3
" # " B  

The quantum mechanical analysis shows that the intervention of the transition state 
is subtler than the standard chemical view would suggest. The activation energy 
may well be below the lowest energy state of AB#. Interestingly, in Hilbert space 
there is no need for molecular structures because it is the spectra that determine 
possible chemical paths. 

To sum up, coupling between ingoing and outgoing channel effectuates best at 
resonance. In the Scheme I we illustrate this point with energy levels EAn and EBm. 
Pumping with high intensity laser via a multi photon process that put the ground 
state and a vibration state in a coherent superposition, put a time dependent 
amplitude at level EAn; this may prompt for an interaction with another level 
(transition state for example) which in turn interacts with the level EBm; so that the 
initial amplitude may be taken away from that coherent state to another one ending 
at the product level EBm; and amplitude transfer seen as a sort of decaying if 
relaxation towards ground state of product happen.  
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Time evolution in a 1-system appears as “diffusion” in the quantum state space.  
The model discussed so far appears simple. There are, however, many aspects 

that concern complex 1-systems. To keep things at a very general level observe that 
energy labels, base states of otherwise undefined 1-system are the elements of the 
model. At the Fence, such states can be associated to spatially distributed systems: 
for instance, enzyme catalyzed reactions. The energy resonance between the lowest 
energy levels in the reactant and product channels may be associated, at the Fence, 
with large “structural” differences. This would imply the possibility of “clocking” 
the structural change. Time would no longer be a parameter but it can be quantified 
in terms of lifetimes: time as duration. Characteristic times would emerge from 
pure time evolution in Hilbert space measurable from the response in intensity of 
specific |Ck(t)|2. 
 
 
1.5. Formal chemical base sets 
 

A chemical graph would serve now the purpose of a label identifying something 
related to a chemical system. In Scheme II a set of chemical graphs for a 1-system 
with n=16 electrons and four nuclei Z=(ZC, ZC, ZH, ZH, ZH, ZH) are depicted. 
 

 
  SCHEME II 

The number of I-frames required to represent base states for the present system 
serves to classify them: base states |1>, |2> and |3> with one-I-frame each; base 
states |4> with two-I-frames; base state |5> with three I-frames; base states |6> and 
[7> with four I-frames; base state |8> with six I-frames. The direct product symbol 
is used to indicate asymptotic base states. Base states |3> and |4> are related to a 
description from an asymptotic state |4> towards a one-I-frame state |3>.  There are 
many more base labels associated to electronic states for this well known organic 
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chemistry system. Ionized base sates, charge transfer base states are understood 
when one speaks about a complete base set. All possible base states would then 
cover any aspect of chemical changes related to the 1-system initially named 
ethylene. 
 Many I-frame systems describe situations that are characteristic of laboratory 
experiments related for instance to scattering and chemical processes. The I-frame 
is a classical physics device with location and orientation with respect to another I-
frame or to a fixed laboratory frame. By assigning the total mass to the respective 
origin (as a first model) the frame may show definite linear momentum and angular 
momentum. Thus, for a two-beam experiment introduce a reference frame so that 
the beam sources are located and the beam directions fixed. The chemical process 
is described with the help of only one internal I-frame. The shared I-frame is used 
to project the 1-system internal states and the states of the two-I-frame system must 
be included.  
 The chemical reaction starting from two space separated methylene radicals 
would involve the first four label states: (|1>  |2>  |3>  |4>). The quantum states are 
given by a column vector with the corresponding amplitudes (complex numbers) 
that at a given time t they are written as [C1(t) C2(t) C3(t) C4(t)]. The initial state is 
given by [C1(to) C2(to) C3(to) C4(to)]= [0 0 0 1]. The objective being to construct a 
quantum state such that [C1(t) C2(t) C3(t) C4(t)]= [1 0 0 0] at a sufficiently long 
reaction time. 
 The first thing you have to do is focusing the beams so that their cross section 
lies within a reactive domain. Also, the relative kinetic energy can enter into a 
process of activation. These are classical aspects and if we stay at this level of 
description there would be no way to find out the factors that would determine the 
amplitude shift we are hoping for. 
 A commensurate description requires a one-I-frame description for the 
asymptotic states. This is achieved by taking the system as if it were an aggregate 
that can be related to the one-I-frame system. The base quantum state for this case 
must be given by an “anti-bonding” state so that it can dissociate. The vertical 
double arrow in base state |3> just indicate this property. In terms of space internal 
functions constructed with the fragments there must be a node along the inter-
group distance; the distance we pick up from the two I-frames but now the space 
base function is referred to the common one I-frame. Let us pick up a relative 
kinetic energy for which a quasi-resonance condition obtains with one or more 
internal states associated to the generic base state |2>. Thus, according to this 
analysis, only generic base states |1>, |2> and |3> enter the reactive space. In 
common chemical language there are four unpaired electron states associated to 
base state |3> that define two spin triplet states. 
 Which is a relevant difference between base states |3> and |2>?  The symbol “.-.” 
indicates a spin entangled state with S=0, namely a singlet spin state; this entails a 
symmetric space state for this spin subspace. Let us leave the other electron-states 
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as spectators to the extent they correspond to a triplet spin state. Thus, the changes 
of base states |2> and |3> involve the space part and the spin part. One can excite 
vibration state of the single C-C bong associated to base state |2> as much as you 
like but a change of spin state you cannot expect to get at with such mechanism. 
You need something else. Such is the role of transition states as we saw in the 
preceding model. An appropriate external field must mediate the coupling between 
these base states so that an amplitude different from zero would appear at C2(t). 
 The base states |2> and |1> differ by the number of unpaired electron states. The 
former belongs to a triplet spin state; the latter is a spin singlet. Thus, |2> is anti-
bonding and |1> features a full bonding state.  
 Let us write the linear superpositions required for a quantum mechanical setup 
able to give an understanding about chemical reactions: 
  |Ψ,t> = [C1(t) C2(t) C3(t) C4(t)] (|1>  |2>  |3>  |4>) =  
  C1(t) |1> + C2(t) |2> + C3(t) |3> + C4(t) |4> (1.5.1) 
Within Hilbert space C4(t) at all times is equal to zero. It is only at the Fence that 
one may include this state thereby leading to a semi-classic quantum mechanics. 
  

The concept of a material system and the quantum states sustained by such a 
system are totally different. Laboratory chemistry involves the material system. 
Quantum physical chemistry addresses to quantum states. Is there any difference 
with quantum chemistry, as we know it? Quantum chemistry requires wave 
functions endowed with a particle model representation. This makes a difference to 
be examined at the last chapter of this book.  

 
In order to make some progress along the quantum chemical physics direction, 

let us first introduce quantum mechanical principles in a more rigorous way.  This 
will be the content of the following sections. Emphasis is put on a “linguistic” 
approach to the mathematics. The key for readers not having a specialized training 
is to realize that one should go through these sections with the aim to get a better 
comprehension of the concepts of quantum states and available base sets. The 
examples and exercises are given to help those with less mathematical knowledge: 
they are very simple. 

   
 


