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3. Quantum Theory in Space-Time I-frames  

 
  
 
 
 
 
 
 

 Why do we need space-time descriptions? Well, quantum states are basic 
elements of abstract Hilbert space and as such they do not have space-time 
localization. Abstract quantum mechanics provides a general framework that 
would cover all possibilities a system may show up; it is a foundational construct 
but one does not get hints to construct actual models for most operators. The only 
thing one can require in abstract space is existence that is ensured by endowing 
the framework with a definite mathematical structure. But the world of laboratory 
experiments imposes space-time frameworks. 
 Real space descriptions require concepts of spatiality and temporality lying 
down foundational elements supporting space and time approaches construction. 
But its mathematical structure cannot be induced from experiments reflecting 
quantum phenomena in laboratory (real) space. While these levels are 
incommensurate mappings bridging both would do the job. 
 Because abstract Hilbert space is a pure mathematical structure, the task 
(problem) is to relate the abstract level to the laboratory world via a quantum 
theory incorporating aspects of space-time physics. To delineate these mappings 
the concept of Fence helps “interfacing” pure mathematics to real space 
representations; they point to selected measurable responses in laboratory world.  
 Laboratory benches are placed in real world space; experiments are performed 
at particular moments and locations; electromagnetic energy (photons) serves 
communication purposes; interaction outcomes have a character of events that 
can be recorded, read and/or used to set up further experiments; all these elements 
use a space-time framework. In the space separating/relating these realms (Fence) 
the formalism is cast in terms of elements allowing for a bridge linking real to 
quantum levels. Inertial frames play such a role. 
 In Chapter 1, abstract quantum states |Ψ> were projected in (mathematical) 
time space: the mapping <t|Ψ> corresponds to a complex function Ψ(t) with 
argument on a real time axis. This mapping plays the role of image in time space 
of the abstract state |Ψ>. The time variable is just a mathematical construct until 
concepts of processes are used to help introduce physical (measurable) time. 
Inertial frames play a double role. Firstly, they locate a given material 1-system 
with respect to another I-frame that may serve as a laboratory frame. Secondly, 
internal degrees of freedom for the 1-system permit defining the dimension of a 
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coordinate space that are used as labels identifying base vectors in a configuration 
space: {|x1,x2,x3>} as wel as reciprocal space base vectors: {|k1,k2,k3>}. In 
Section 3.1 these spaces are examined in more detail. 
 At a Fence material systems are present. For electromagnetic matter, the 
number of electrons and nuclei defines the material system. Masses, spin and 
electric charge are fixed parameters for each of the n-electrons and m-nuclei 
defining a 1-system; electrons and protons, for instance, are endowed spin state 
S=1/2 each.  
 
Axiom 5. Configuration space projected base vectors defined via inertial 
coordinate systems provide labels to identify base states in Hilbert-like spaces. 
   
 Let x be a vector belonging to R3(n+m), then |x> is a base vector label by this set 
of real numbers (coordinates). The reciprocal space, |k> is label with reciprocal 
space coordinates. Introduction of an inertial frame, I-frame, is one step towards 
landing the study of quantum physics (mechanics) in configuration space. 
 Abstract quantum states are projected in configuration space. The frames can 
be submitted to changes of origin and rotated with respect to another I-frame. The 
abstract quantum states are fully invariant towards the way we tinker with I-
frames. This property is used later on to construct appropriate bases sets. 
 I-frames of interest are closely related to special relativity spacetime. The 
reason for such a choice is simple: we know how to transform events from one I-
frame to another moving with relative speed v. The speed of light (c) is 
independent from the state of motion of the I-frame sustaining an internal 
quantum state change leading to light emission. The subtlety here is that c equals 
the product of wavelength (λ) and frequency (ω) and these factors do depend 
upon the state of motion taken independently while the product does not. 
 Note, the origin of its space part is located in real space with three orthogonal 
unit vectors: i1, i2, i3; this real space is located with respect to a second frame the 
unit orthogonal vectors are indicated by i’1, i’2, i’3 (laboratory frame). Inside an I-
frame, there is no way to realize if it is displacing with a uniform velocity, say v 
→ ( v1i’1, v2 i’2, v3 i’3); the I-frame is hence seen in motion when sensed from 
another I-frame. Motion always relates at least two I-frames; for an observer it is 
always another I-frame that is in motion; of course one is considering a non-
accelerated dynamic state.  
  

 
3.1. Configuration space projected Hilbert space  
 
Given a configuration space, the symbol q is used as a label to identify a quantum 
base state |q > = | q1, q 2, q 3> = | q1> |q 2> |q 3>. A position operator 

! 

ˆ q  is defined 
in such a way that eq.(3.1.1) holds: 
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! 

ˆ q  | q > =  q | q >  (3.1.1) 
 
The position operator is taken to be Hermitian; the coordinates are real numbers.  

Consider a commutative geometric space, meaning by this sentence that the 
operators products 

! 

ˆ q 
i

! 

ˆ q 
j
 commute for all index pairs i, j, i.e. 

! 

ˆ q 
i
, ˆ q 

j[ ] = ˆ q 
i
ˆ q 

j
" ˆ q 

j
ˆ q 

i
 

is equal to nihl operator, 

! 

ˆ 0 . Thus q represents a vector with well-defined 
coordinate labels. This makes q to stand as a point in the Euclidean configuration 
space R3N; but remember that it is the distance between the origin and the 
configuration point that what really matters; thus, keep in mind that q is a label. 
For the time being the material system is reflected in the dimension of the 
configuration space; we are in the kinematics business. The point now is to show 
that a quantum state, be it in abstract space or in configuration space must be 
invariant under rotations of the I-frame and translations of the origin. 
 

E&E.3.1-2 On Dirac Bra-Ket formalism 

Dirac formulation of quantum mechanics according to von Neumann “is scarcely be 
surpassed in brevity and elegance”, but that “in no way satisfies the requirements of 
mathematical rigor”. The situation has dramatically changed with the introduction of the 
so-called rigged Hilbert space. The reader desiring an appropriate description is referred 
to the papers by: J.E.Roberts, J.Math.Phys.,7(1966)1097-1104; and O. Melsheimer, 
J.Math.Phys. 15 (1974) 902-916. We retain that Dirac’s formalism is mathematically 
sound when defined in appropriate function spaces.  
 
 The set of base states {|q>} is orthonormal in a generalized function sense, 
namely: 
 <q’|q> = δ(q - q’)  (3.1.2) 
The symbol δ(q-q’) stands for a measure, Dirac’s generalized function; in short, 
it acts inside integration symbol:  
 ∫dq’ f(q’) δ(q - q’) = f(q);    
 ∫dq’ δ(q - q’) = 1   (3.1.3) 
It is not difficult to see that a unit operator can be defined as: 
 

! 

ˆ 1  = ∫dq’ |q’><q’|  (3.1.4) 
The complex “function” <q’|q> is actually a generalized function with properties 
given above. It is for this generalization among others that people talk about 
“rigged” Hilbert space. 
 

E&E.3.1-3 Prove eq.(3.1.4) 
First, we test whether or not the equation (3.1.4) functions as a unit vector. Consider the 
abstract quantum state |Ψ> and multiply it by 

! 

ˆ 1  which trivially means: 

! 

ˆ 1 |Ψ>=|Ψ>. Now: 
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  |Ψ> =

! 

ˆ 1 |Ψ> → ∫dq’ |q’><q’|Ψ> = ∫dq’ |q’> Ψ(q’) 
 

Multiplying now from the left by <q’’| and integrating over dq’’ one finds: 
 
   

! 

ˆ 1  (∫dq’ |q’> Ψ(q’)) = 
  ∫dq’’ |q’’><q’’| (∫dq’ |q’> Ψ(q’)) =  
  ∫dq’∫dq’’ |q’’><q’’|q’> Ψ(q’) = 
  ∫dq’∫dq’’ |q’’>δ(q’- q’’)Ψ(q’) = ∫dq’|q’>Ψ(q’) 
 

The operator given by eq.(3.1.4) actually function as the identity operator. The procedure 
is tautologic. 
Second, you have to show that the unit operator actually has the form given in (3.1.4). 
Pick up now from above  
   ∫dq’∫dq’’ |q’’><q’’|q’> Ψ(q’) =  
   ∫dq’ (∫dq’’ |q’’><q’’|)|q’> Ψ(q’) 
 
This must be equal to ∫dq’|q’>Ψ(q’). 
Therefore one has to write: 
   (∫dq’’ |q’’><q’’|) = 

! 

ˆ 1  
 
 
Consider the (abstract) quantum state |Ψ> of a 1-system given as a linear 
superposition using eq.(3.1.4): 
 
  |Ψ> =

! 

ˆ 1  |Ψ> →  
   ∫dq’ |q’><q’|Ψ> = ∫dq’ |q’> Ψ(q’)  (3.1.5) 
 
The quantum state |Ψ> projected in the inertial frame is a linear superposition 
with amplitudes given by its wave function Ψ(q’) ↔ <q’|Ψ>.  

Note that the symbol Ψ is used for two different situations: 1) as a label 
(name); 2) as a mathematical function (mapping). 

From eq.(3.1.4) it is clear that we have to have the wave function defined in a 
neighborhood dq’ of the point q’. Reconstruction of a quantum state implies 
knowledge of its wave function at all points in configuration space. 

The wave function is first of all the amplitude calculated at a point of 
Euclidean space containing information about the abstract quantum state |Ψ>. It 
is a complex function of a real variable, namely  Ψ(q’) ↔ <q’|Ψ>; a phase is 
always implicit.  

Note that in any neighborhood to a point q’, the projection <q’|Ψ> embodies 
full information about the quantum state |Ψ>. In function space, Ψ(q’) stands for 
a quantum state from abstract rigged Hilbert space. This mapping permits shifting 
the study towards mathematical constructs, e.g. partial differential equations, 
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familiar in mathematical physics. Of course, the reciprocal statement is not 
always valid, namely, a complex function on a real domain does not necessarily 
represent a quantum state; keep this caveat always in mind. 

Quantum states are sustained by an invariant material system. Two different 
quantum states of the same material system have different wave functions; they 
do not need be orthogonal; only the base functions must be orthogonal as they are 
eigenfunctions derived from self-adjoint operators. From eq. (1.3.1.1), the 
particularities of the material system are incorporated in the Hamiltonian, while 
general symmetry properties would appear in the base set elements; the reason for this is 
simple: base states are fixed, quantum states can be variable. Make always the distinction 
between base function and wave function. 
 There are two classes of base functions. One relates to denumerable base 
states the other to continuum base states to be defined below starting from 
eq.(3.1.5).  
 Consider now a quantum system for which we know a complete, denumerable 
base set. Then the following relation can easily be proved right starting from 
eq.(2.2): 
  <q|Ψ> ↔ Ψ(q) = Σi <q|ai> <ai| Ψ> =  
  Σi φi(q) Ci(Ψ)  (3.1.6) 
 
The wave function contains now information on all those base states showing a 
non-zero Ci(Ψ).  

Observe that, once we get the base set, all what is necessary to construct the 
quantum state is in the set of amplitudes, {Ci(Ψ)}; these are numbers independent 
from the configuration point q selected by any reason. The base set {φi(q)} is 
totally independent of the quantum state Ψ(q); in fact base functions are 
determined by complete sets of commuting operators (Cf. Axioms 1 to 4). 
 Because the base functions have definite and fixed quantum numbers, the 
configuration vector has been given a sequence order totally arbitrary that is kept 
fix. For a 1-system, lets order the configuration vectors for electron states first, 
namely, an R3n object; for nuclei use R3m space. The electronic space component 
shows new symmetry properties related to the ordering assigned: q1,q2,…qn in 
the argument of the base function. But one may take for instance q2,q1,…qn that 
would do as argument because the underlying material system consists of 
identical elements. Define a permutation operator Pij that move the label j to the 
position i and vice versa: 
 
  

! 

ˆ P ij φk(q1,…, qi,…, qj,…,qn) = φk(q1,…, qj,…, qi,…,qn) 
 
This relationship must be read as follows: the effect of the operator 

! 

ˆ P ij 
substitutes the labels found at position i by those found at position j, the implicit 
initial order is conserved. Just to give a hint:  take base configurations ni d(qi) 
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njf(qj) the permuted ones reads as: njf(qi) nid(qj) you do not swap “particles” as 
they are identical by hypothesis. Here, ni and nj are principal quantum numbers. 
 By applying 

! 

ˆ P ij again, one gets the operator equation 

! 

ˆ P ij
2=1, its eigen values 

are +1 or –1. Thus, the base function φk(q1,…, qj,…, qi,…,qn) is either symmetric 
or antisymmetric under permutation 

! 

ˆ P ij.  
 If the spin base function is arranged as σ(1,2,…n) where the argument only 
indicates spin labels, then, under permutation of these labels the function can be 
either symmetric or anti symmetric. For electron states, assume that σk(1,2,…n) is 
the adequate spin basis to be combined with the space one. The total space-spin 
base function is given as direct product: φk(q1,…,qj,…,qi,…,qn) ⊗ σk(1,2,…n). 
This product must be antisymmetric to permutations. Electron states are said to 
stand for fermions. But the anti-symmetry property can be attained in two 
different manners:  
  a) Space component antisymmetric and spin part is symmetric;  
  b) Spin part is antisymmetric, the space part symmetric. 
Whatever the picture we would like to hang on the base set, provided global 
symmetry properties are respected, it would have no effect on the determination 
of the quantum state. Provided the base set is complete, eq.(3.1.6) shows the 
amplitudes to be the place where the quantum state is disclosed. Note that we 
assume the base states are implicitly multiplied by the appropriate spin base 
function. Integration over spin degrees of freedom is implicit. 

In Hilbert space, quantum states normalized to one that can be projected in 
configuration space are represented by square integrable functions. Quantum 
states in the continuum are included in an expanded space, rigged Hilbert space 
where mathematical objects such as <q|q’> are defined in the space of 
generalized functions. Note that the problem resides at the pure mathematical 
level. Existence of quantum states in the continuum is taken for granted; this has 
to do with Physics. 

The measure <q|q’> and eq.(3.1.5) are used to formally calculate the norm of 
<Ψ|Ψ>: 
 (<Ψ|

! 

ˆ 1 )(

! 

ˆ 1 Ψ>) = ∫dq <q| Ψ*(q) ∫dq’ |q’> Ψ(q’) =  
 ∫ dq ∫dq’ <q|q’> Ψ*(q) Ψ(q’) = 
 ∫ dq ∫dq’ δ(q - q’) Ψ*(q) Ψ(q’) =  
 ∫dq Ψ*(q) Ψ(q) = 1  (3.1.7) 
 
The two ends of eq.(3.1.7) are numbers. The maps connect elements from 
abstract to the projected Hilbert space using a configuration space with respect to 
an I-frame with origin in real space. Moving from left to the right will show up 
that square integrable functions relate to states in abstract Hilbert space, namely it 
provides a sufficient condition. Note that an arbitrary square integrable function 
does not necessarily represents a quantum state.  
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 In what follows, we retain the hypothesis: Hilbert space is the physical states 
space while the mathematical mappings to a Fence are defined in a rigged Hilbert 
space including an I-frame.   
  

 

3.2. Translation operator 

 

Hilbert space states do not depend upon configuration coordinates. This is 
apparent from the amplitudes Ci(Ψ) discussed above. The question now is to 
study the behavior of space eigenkets (|q’>) towards an origin translation. While 
the quantum state is frame independent, the projections given by <q|Ψ> may 
show specific properties under origin translation; we study now some issues. 
 

 

3.2.1. Infinitesimal translations 
 
Let us define 

! 

ˆ T (dq’) as the operator accomplishing an infinitesimal translation: 
 
 

! 

ˆ T (dq’) |q’> = |q’+dq’>  (3.2.1.1) 
 
What effect would produce the translation operator of the quantum state 
represented in eq.(3.1.5)? Let us operate that equation with the help of eq(3.1.5): 
 
 

! 

ˆ T (dq’) |Ψ> → 

! 

ˆ T (dq’) |q’><q’|Ψ> =  
 

! 

ˆ T (dq’) |q’> Ψ(q’) = |q’+dq’> <q’|Ψ> =   
 |q’ > Ψ(q’- dq’)  (3.2.1.2) 
 
The last equality follows from a change of variables, q’→ q’-dq’, the integral of 
(3.2.1.2) can be written as: 
 
     ∫dq’ |q’+dq’> <q’|Ψ> =∫dq’ |q’ > <q’-dq’|Ψ> = 
  ∫dq’ |q’ > Ψ(q’-dq’)  (3.2.1.3) 
 
Thus, a displacement in a given direction of a position ket label corresponds to a 
translation of the wave function argument in the opposite direction. The change 
in the ket label amounts to an origin shift in laboratory space. 
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 As it was done in Chapter 1 for a time displacement operator, norm invariance 
is imposed. Therefore, 

! 

ˆ T (dq’) is a unitary operator such that: 

! 

ˆ T 
†(dq’)

! 

ˆ T (dq’)= 

! 

ˆ 1 . 
The group property under composition of two displacements is given as: 

! 

ˆ T (dq’)

! 

ˆ T (dq’’)= 

! 

ˆ T (dq’+dq’’). There is an inverse operation: 

! 

ˆ T (-dq’)=

! 

ˆ T 
-1(dq’); 

and continuity,  
  lim dq'→0 

! 

ˆ T (dq’) = 

! 

ˆ 1   (3.2.1.4) 
 
For the operator fulfilling the above properties it can be shown that 
 
 

! 

ˆ T (dq’) = 

! 

ˆ 1 -i 

! 

ˆ k ⋅dq’  (3.2.1.5) 
 
The reciprocal space enters into the handling of translation operators; the reason 
for this result is located in a dimensional analysis, the translation operator is 
dimensionless, so must be for the product 

! 

ˆ k ⋅dq’. 
 
 
3.2.2. Reciprocal (momentum) space 
 
The vector operator 

! 

ˆ k must hence be Hermitian in order to be norm conserving; 
with inverse of length as the appropriate dimension: 

! 

ˆ k  is the generator of 
displacement in configuration space. The direct and inverse spaces share the 
origin. 
 Eigen vectors for the wave operator 

! 

ˆ k  are labeled as |k1,k2,k3> in the 
understanding that operator components commute among themselves. Thus,  
 
 

! 

ˆ k  |k1,k2,k3> = 

! 

ˆ k  |k> = k |k>  (3.2.2.1) 
 
The eigen values of 

! 

ˆ k  are real numbers as they should. Furthermore, in k-space 
the scalar product is a generalized function (distribution) that only makes sense 
inside an integral: 
 <k|k’> = δ(k-k’)  (3.2.2.2) 
 
With these properties, it is easy to show a resolution of the identity in k-space: 
  
 

! 

ˆ 1 =  ∫dk’ |k’><k’|  (3.2.2.3) 
 
An arbitrary quantum state |Ψ> can be expanded in k-space with eq.(3.2.1.9) as: 
 
 |Ψ> =

! 

ˆ 1 |Ψ> = ∫dk’ |k’><k’|Ψ> (3.2.2.4) 
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<k’|Ψ> is the wave function standing for the quantum state |Ψ> in reciprocal 
space, Ψ(k’). 
 

E&E.3.2-1. Find a relation between k- and q-space wave functions 
Multiplying eq.(3.2.1.10) from the left with <q’|: 
 
 <q’|Ψ> = ∫dk’ <q’|k’> <k’|Ψ> 
 
This equality leads to the definition of the transformation function: <q’|k’>. The set of 
plane waves exp(i k’•q’) can be equated to <q’|k’>. Thus, <q’|k’> provides a complete 
set of base functions relating these two spaces. The relationship is thence proportional to a 
Fourier transform: <q’|Ψ> = ∫dk’ exp(i k’•q’) <k’|Ψ>. The reverse relationship reads: 
 
  <k|Ψ> = (1/2π) ∫dq’ exp(-i k•q’) <q’|Ψ>. 
 

 Let us examine the bra obtained from <q’|

! 

ˆ k . The result when multiplying 
from the right with |k> from eq. (3.2.2.1) is k<q’|k>. This suggests that  <q’|k> 
may be proportional to exp(ik•q’). The operator 

! 

ˆ k  is proportional to -i (∂ /∂q’). 
Consider the relation <q’|

! 

ˆ k  = -i (∂ /∂q’) <q’| that gives the form of the k-
operator in coordinate space. It follows the matrix elements of this operator are: 

 
 <q’|

! 

ˆ k |q’’> = -i (∂ /∂q’) δ(q’-q’’) (3.2.2.5) 
 

Let us use eq.(3.1.2) in conjunction with (3.2.2.5) to get the effect of the 
reciprocal space operator: 

 
 <q’|

! 

ˆ k |Ψ> = ∫dq’’ <q’|

! 

ˆ k |q’’> Ψ(q’’) = 
  ∫dq’’ -i (∂ /∂q’) δ(q’-q’’)Ψ(q’’) = -i (∂Ψ(q’) /∂q’) =  
 -i (∂ /∂q’) <q’|Ψ>  (3.2.2.6) 
 
The rule commonly used replacing operator 

! 

ˆ k  by -i (∂ /∂q’) in configuration 
space appears here in a natural way. Note that <q’|

! 

ˆ k  is symbolically replaced by 
-i (∂ /∂q’) <q’| to get eq.(3.2.2.6). 
 The transformation function connecting q- to k- representations obtains when 
|Ψ>→|k’> in (3.2.2.6). Bearing in mind that 

! 

ˆ k | k'>= k'|k'>: 
 
 k' <q’| k'> = -i (∂<q’| k'> /∂q’) (3.2.2.7) 
 
The solution to this differential equation is the transformation function  
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 <q’| k'> = A exp(ik’.q’)   (3.2.2.8) 

 

A=1/√2π.  Thus, the projected base function of a reciprocal space eigen vector is 
a plane wave. Note that it is common to use the symbol ∇  for ∂ /∂q’= i1∂ /∂q1’+ 
i2∂ /∂q2’+ i3∂ /∂q3’. 

All the discussion above concerns “kinematic” elements of the theory. There 
is no dynamic element yet.  
 
 
3.2.3 Finite real space translations 
 
Here, one should consider displacements and rotations of the whole I-frame. 
Internal quantum systems can be seen as determining properties of the associated 
total mass, charge and spin. To the extent that no couplings between internal and 
“external” degrees of freedom are let in, there is now a possibility to treat the 
global I-frame as a “particle” in a way to be determined in later chapters. Now, let 
us take for granted such separation. 

A finite displacement obtains by successively applying infinitesimal 
translations given by eq.(3.2.1.5). Consider the unit vector ij and a finite segment 
Δqj’, divided it in N parts, so that Δqj’ / N when N→∞ approaches dqj’. Thus, one 
gets  
 

! 

ˆ T (Δqj’ ij) = lim N→∞ (

! 

ˆ 1 -i 

! 

ˆ k 
j
⋅(Δqj’/N))N =  

 exp(-i

! 

ˆ k 
j
⋅Δqj’) (3.2.3.1) 

 
E&E-3.2-2. Show that successive translations in different directions commute. Show also 
that this result implies that the commutator [

! 

ˆ k 
j
, ˆ k 

i
]=δjk

! 

ˆ 1 . 
 

A finite displacement of a base state in k-space obtains when summed over 
repeated indexes: 
 

! 

ˆ T (Δq’)|k> = exp(-i

! 

ˆ k 
j
⋅Δqj’)|k> =  

  exp(-i k⋅Δq’) |k>  (3.2.3.2) 
 
Thus, a displacement of the origin for the inertial frame puts a phase onto the 
base kets in reciprocal space. The change of origin is reminded by the phase 
factor exp(-ik⋅Δq’) that is the eigen value of the operator 

! 

ˆ T (Δq’)=exp(-i

! 

ˆ k 
j
⋅Δqj’). 

The operator 

! 

ˆ T (Δq’) is unitary but not Hermitian. 
Observe on the other hand that 

! 

ˆ k =-i(∂ /∂q’) is Hermitian; its base states {|k>} 
fulfill: 

! 

ˆ k |k>=k |k>. The vector k signals (label) a direction in reciprocal space. 
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Note that for one value |k| there are infinite number of directions. The 
mathematical functions standing for <q|k> are not square-integrable functions; 
this is one of the reasons explaining the expansion of Hilbert space to a rigged 
Hilbert space. 

One easy way to introduce dynamical elements in this scheme obtains by 
multiplying the operator 

! 

ˆ k  by Planck’s constant a linear momentum operator 

! 

ˆ p  
obtains: 
 

! 

ˆ p  =   

! 

h  

! 

ˆ k = -i   

! 

h  (∂ /∂q’) = -i   

! 

h  ∇  (3.2.3.3) 
 

Multiplying eq. (3.2.1.6) by Planck constant we get standard commutation 
rules for position-momentum operators: 

 
 

! 

ˆ q 
i
, ˆ p 

j[ ]   = i  

! 

h  δij 

! 

ˆ 1   (3.2.3.4) 
 
These are fundamental equations that would to quantum mechanics. You do not 
need to postulate them as they result from general invariance properties. What do 
you have to postulate is that the operator 

! 

ˆ p  is the momentum operator for a 
particle if you want to introduce a classical particle view.  

Note that one only has an operator form:

! 

ˆ p  =   

! 

h  

! 

ˆ k . The position, the reciprocal 
space and momentum operator components commute among themselves, which 
implies that their average values (<

! 

ˆ q > = q, <

! 

ˆ k > = k and <

! 

ˆ p > = p) can be taken 
as full vectors at variance with angular momentum that we start to analyze below. 
Finally, invariance to translations of the base states generates the most important 
relation between operators in abstract space and their projection in configuration 
space; the dimensions are fixed by Planck constant. 
  
 
E&E.3.2.3. Calculate the linear momentum of a given quantum state |φ> 
First name the projection in k-space: <k|φ> = φ(k). Calculate the representation in k-
space: 
 |φ> = ∫dk’ |k’><k’|φ> 
 
This is a linear superposition where the information on the quantum state is collected in 
the continuum set {<k’|φ>}. The momentum is the average value of 

! 

ˆ p  : < φ |

! 

ˆ p  | φ >. 
Thus,  
  < φ |

! 

ˆ p  | φ >= ∫dk’’ <φ|k’’><k’’|

! 

ˆ p  ∫dk’ |k’> <k’|φ> =  
 ∫dk’ ∫dk’’ <φ|k’’><k’’| 

! 

ˆ p  |k’><k’|φ> =  

 ∫dk’ ∫dk’’ <φ|k’’><k’’|   

! 

h  

! 

ˆ k |k’><k’|φ> = 
   

! 

h  ∫dk’ ∫dk’’ <φ|k’’><k’’| 

! 

ˆ k |k’><k’|φ> = 
   

! 

h  ∫dk’ ∫dk’’ k’<φ|k’’><k’’|k’><k’|φ> = 
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! 

h ∫dk’ ∫dk’’ k’<φ|k’’> δ(k’’-k’)<k’|φ> = 
    

! 

h  ∫dk’ k’ <φ|k’> <k’|φ> = 0 
 

Reflect about the fact that for any quantum state the momentum in the inertial frame is 
zero. From mathematics the last equality follows from the fact that <φ|k’> <k’|φ> is 
positive and k’ is an odd function (positive and negative parts add up to zero. 
Hint: |φ> becomes a stationary state. 
 
 
3.2.4. Direct-Reciprocal Spaces: Fourier transforms 
 
Translation symmetry generates two types of base states, namely, position 
coordinate and reciprocal space coordinate. The range accorded to configuration 
space coordinates goes from -∞ to +∞; in reciprocal space the k-coordinates have 
also the range: ]-∞,+∞[. The transformation function Aexp(ik.q) forms a 
complete basis set serving to express a given quantum state in k-space in q-space: 
 

 φ(q) =1/√2π

! 

dk

"#

+#

$  exp(ik.q) φ(k) (3.2.4.1) 

 
What is projected here is the quantum state |φ> first in k-space and then 
multiplied by <q| from the left. In the theory of Fourier transformations, φ(q) is 
the Fourier transform of φ(k). 

From the structure of the equation above it is clear that exp(ik.q) plays the 
role of a base function. The inverse relation reads as: 

 

 φ(k) =1/√2π !
+"

"#

dq  exp(-ik.q) φ(q) (3.2.4.2) 

 
Because the actual mathematical forms of φ(q) and φ(k) are different, albeit they 
represent the same abstract quantum state, different symbols are commonly used 
to identify them; here, maintain the same symbol (label) to stress the connection 
with a quantum state. 
 Consider a time dependent quantum state |φ,t> and project it in k-space first; 
then take a system separable in space-time as we have already done in the 
preceding chapter: 

 <q|φ,t> = 

! 

dk

"#

+#

$  <q |k><k|φ,t> = 

! 

dk

"#

+#

$  <q |k><k|φ>|t> = 

  

! 

dk

"#

+#

$  <q |k> <k|φ> exp(-iωt).  
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Using eq. (3.2.4.1) one gets: 
 

 φ(q,t) =1/√2π

! 

dk

"#

+#

$  exp(i(k.q-ωt) φ(k) (3.2.4.3) 

 
In the case that k and ω were independent, the separation leading to φ(q,t) 
starting from a quantum state prepared in k-space would just be an apparent time 
evolution: the wave packet would come back to φ(q,t=0) and start up again a new 
cycle; the amplitudes in absolute value are invariant. 
 The situation showing physical interest corresponds to  
 
  <k|φ,t>= <k|φ>exp(-iω(k)t);  
 
the frequency would appear as a function of k. In other words, space and time 
become mingled. The function ω(k) is known as a dispersion relationship. 
Examples come up in solid-state physics and many other branches of physics. 
 Equations (3.2.4.1-2) are expressions of the linear superposition principle. As 
they stand no physical representation is required: they are mathematical entities in 
configuration (abstract) space. It is a formalism that covers all possibilities a 
system may show. The formalism includes all frequency (polychromatic) 
combinations that may stand for particular quantum states we might be capable of 
constructing. This is what φ(k) means, i.e. everything until specific sets of 
amplitudes are introduced. 
 At this point it is appropriate to part pure mathematical from physical 
elements. To the former belongs Fourier transforms theory. The latter relates to 
the mapping |α> → <q|α> meaning with this arrow a projection of a quantum 
state on a configuration space the labels of which are real numbers but the 
elements <q|α> are complex numbers. These types of complex numbers are those 
that can be manipulated leading to representations of different quantum state 
representations at a Fence. Remember that real numbers are a subset of the 
complex numbers. 
 In pure mathematics one study functions α(q) without a necessary relation to 
possible projected <q|α> quantum states. We have to bear in mind the difference: 
not every mathematical function stands for a projected quantum state; in the early 
days these functions belonged to the so-called square integrable functions. A 
large set of projected quantum states did not belong to this class. Mathematics 
was hence enlarged with generalized (distributions) functions to which Fourier 
analysis was extended. Because we use mathematical analysis to construct 
solutions for a number of physical problems, how do we know correct physical 
answers obtain? In science, it is experiment and the experimental results that help 
solving such a type of questions. Those experiments belong to our Fence domain. 
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3.2.5. Quantum states prepared at a Fence (laboratory) 
 
Two examples are introduced that illustrate a host of experimental situations. 
 
 
A) Gaussian states 
A first practical example corresponds to a Gaussian quantum state: 
   
   φG(q) = (2/π α2)3/4 exp(-q2/ α2) (3.2.5.1) 
 
The representation of this quantum state in reciprocal space k can be calculated to 
be: 
  φG(k) = (2π α2)3/4 exp(-k2 α2/4) (3.2.5.2) 
 
The Fourier transform of a Gaussian quantum state in configuration space is also 
a Gaussian in reciprocal space. The widths at half-maximum, Δq and Δk, are 
controlled by the parameter α, they are roughly inverse to each other so that: 
 
  Δq Δk ≈ 1  (3.2.5.3) 
 
Observe that the magnitudes Δq and Δk refer to a property of the quantum state 
φG(q) or to φG(k). The axis q and k cover real number systems while Δq and Δk 
are a different type of number. This distinction is important to bear in mind. It is 
at this level that physical situations enter. To talk of particular Δq and Δk one 
must know that a particular quantum state is involved. In other words, the 
amplitudes intervening in the representation of the quantum state are well 
defined. 
 Now, it is a common practice to multiply k by Planck’s constant and using the 
prescription p=hk to get an expression like: 
 
  Δq Δp ≈ h  (3.2.5.4) 
 
The widths are associated to a preparation of the quantum state and have nothing 
to do with measurements as these latter belong to real space situations. This issue 
asks for a little more discussion. Of course, design of a measuring device leading 
to a particular quantum state of the system after interaction will generate a 
relationship like eq.(3.2.5.4), namely, the famous Heisenberg uncertainty 
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relationship that would appear as result derived from the quantum state prepared 
and expressed as linear superpositions.  
 
B) Box-states  
Construct a quantum state in momentum space (<k|φ>) when the space dependent 
function shows zero amplitudes outside a range about the origin of length L; this 
is related to the common case of a particle in a box; the material system at the 
Fence is trapped inside –L/2≤x≤L/2 so that φ(x) =0 for x≤-L and x≥L. Remember 
that φ(x) are the amplitudes of the quantum state in the configuration base set: 
<x|φ>. 
 The result concerning the basis set required to represent φ(x) in this range is 
amazing. From the continuous range shown by eq(3.2.4.1) one gets a Fourier 
series: 

  φ(x)=ao+

! 

n=1

n="

# {ancos(2nπx/L)+bnsin(2nπx/L)} (3.2.5.5) 

 
This form given to φ(x) cannot represent a quantum state as the trigonometric 
functions (cos and sin) do not have the properties to function as a basis set 
appropriate for the task; to get there one uses equality below: 
 
  e(i(2nπ x/L)) = cos(2nπx/L) + i sin(2nπx/L). 
 
Then after some mathematical contortions the quantum state is represented as: 
 

  φ(x) = 

! 

n="#

n= +#

$ cn e(i(2n π x/L))  = !
+"=

#"=

j

j

cnj eix kj (3.2.5.6) 

 
From the boundary condition imposed one gets the allowed momenta:  
 
  2njπ/L = kj and nj=0, ±1,±2,… (3.2.5.7)  
 
In the latter sum only values allowed for (3.2.5.7) contribute. 
 The introduction of a configuration space domain constraint changes the 
nature of the basis functions. The quantum state is given as a function of basis 
functions over discrete momenta given by eq. (3.2.5.7). 
 A discrete series of energy values, energy levels, replace the continuum 
distribution. This is an important result. The constraint instead of being trapping 
the system in a finite region of space can also be thought as a periodicity 
constraint. 
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C) Discrete-continuum connections 
A common relation between discrete and continuum pictures obtains if one takes 
L to be the period in each of the three space directions q1,q2,q3 defining vector q. 
The Fourier series reads 
  φ(q) = (1/L)3/2!

k

ck(t) ei(k·q- ω t) ; 

  ω = (h/2m) k·k = (h/2m) k2  (3.2.5.8) 
 
The sum includes terms only with components kj given by eq.(3.2.5.7) of each 
vector k. 
 In k-space for large L a volume element d3k includes a number of states 
with k’s different: d3k (L3/2π). The normalization of series (3.2.5.8) is to be 
chosen by selecting the coefficients ck. The square integral over the periodicity 
cube is then: 

 !
)( 3

L

d3q φ(q)2 = L-3!
',kk

ck* ck’ ei(ω−ω′) t ∫ d3k e (k’- k)·q 

   (3.2.5.9) 
 
At the right-hand-side the space integral is zero for k’≠ k and for the equality the 
result is V=L3 to finally get a fundamental theorem: 
 

 !
)( 3

L

d3q φ(q)2 = !
k

ck* ck (3.2.5.10) 

 
  The key result concerning the quantum state in the periodicity cube is the 
connection with the set of amplitudes signaling the relative intensity response of 
the associated eigen states. For zero amplitude no response is expected; if some 
response is to be found it will correspond to the allowed k-values indicated by the 
periodic boundary conditions eq.( 3.2.5.8). 
 It is apparent that in the limit L→∞ the continuum representation should 
emerge. By using the rule 
 
  !

k

→  (L/2π)3 d3k  (3.2.5.11) 

Eq.( 3.2.5.8) yields 
  φ(q,t) →  
  (L1/2/2π)3 ∫ d3k c(k,t) exp(i(k·q- ω t)) (3.2.5.12) 
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Consider the limit now, the function (L1/2/2π)3 c(k) must correspond to φ(q) in 
our notation. 

If only a few c(k)-values define the quantum state we do not need to do this 
conversion. But if the quantum state is defined by some dense set of values, 
eq.(3.2.5.12) would represent the Fourier transform of φ(q) in the limit L→∞ 
only if 
     φ(k) = lim L→∞ (L1/2/2π)3 c(k) (3.2.5.13) 
 
Provided this limit holds for each k, the continuum representation can be 
homologated to the discrete one.  

The connection between c(k) and φ(k) ensures the contention that quantum 
states can be expressed by the amplitudes of linear superpositions. These numbers 
represent the quantum state. The basis functions inform us about the nature of the 
energy levels a material system has; we have to calculate them with a well-
defined procedure: Schrödinger equation seen in Chapter 1. More about this is to 
be found in the following chapters and section 3.10 where the material system is 
electromagnetic energy trapped in cavities or propagating in free space. 

But before examining EM systems we need to study the invariance of 
quantum states to rotations of I-frames. 
 
 
3.3. Rotation invariance: Angular Momentum 
 
Quantum states cannot depend upon the way an I-frame is oriented while origin is 
kept fixed. Furthermore, in quantum mechanics there is no such a thing as the 
direction of the angular momentum; there is its magnitude (J) and a projection 
along a given direction; this is related to the commutation relationships, as we 
will see below.  
 Still, the way experimental apparatuses are oriented with respect to a fixed I-
frame does matter to the extent they enter under controlled interactions with the 
material system sustaining the quantum states. This is to remind that one does not 
measure a material physical system as if were an object but one measure varied 
changes in their quantum states expressed as response functions. The same 
material system sustains infinity of quantum states referred to a fixed base set. 
Here, our aim is the construction of relevant base sets that can elicit space 
isotropy. 

Quantum states are abstract concepts. If you are studying quantum states for 
an elephant for sure the states must be invariant to rotations of I-frames. Do not 
try to move a real elephant, just the frames. If you can sense the difference 
between a material system and associated quantum states, then we are in 
business.  
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In real space there are arbitrary proper rotations of a I-frame with respect to a 
second fixed one denoted as R1,R2,…. Proper rotations do not change the hand of 
a frame. Two rotations carried out in the sequence R1 first and then R2 are written 
as a product R2 R1. The product is not commutative if R2 is a rotation away from 
the orientation achieved with R1; i.e. rotation axes are different. Let E stand for 
no-rotation, the inverse rotation to R, designated by R-1, is defined by R-1R=RR-1 

= E. The rotation group is the set of all proper rotations; this excludes reflection 
operations that change the hand of the I-frame (left-handed into right-handed and 
vive versa). 

We have already met examples of invariance to changes of origin in time and 
space; there, an unitary operator relates to a displacement generator operator 

! 

ˆ O  in 
a simple manner as shown by eqs.(1.3.1.3) and (3.2.2.2): ˆ U 

z
=

! 

ˆ 1 -i

! 

ˆ O ε.  
For ε = δt operator 

! 

ˆ O  takes on the form   

! 

ˆ H /h  while for translations ε = dq and 
operator 

! 

ˆ O  gets the form 
  

! 

ˆ p /h.  
Planck constant can be expressed in three different ways: in units of energy by 

time; or linear momentum by length; and finally it has the dimension of angular 
momentum. The latter relates to rotations in 3-space.  

Let 

! 

ˆ J  be the angular momentum operator and n, a unit vector, around which 
an infinitesimal rotation δφ is carried out; this is a one-parameter rotation. By 
analogy to the preceding cases define the rotation operator 

! 

ˆ D (n,δφ) as: 
 

  

! 

ˆ D (n, δ φ) = 

! 

ˆ 1 - i (

! 

ˆ J .n/  

! 

h) δ φ (3.3.1) 
 
The angular momentum operator 

! 

ˆ J =(

! 

ˆ J 1,

! 

ˆ J 2,

! 

ˆ J 3) fulfils the commutation rules: 
 
 

! 

ˆ J i

! 

ˆ J j -

! 

ˆ J j

! 

ˆ J i = [

! 

ˆ J i,

! 

ˆ J j] = i  

! 

h  εijk

! 

ˆ J k  (3.3.2) 
 
The symbol εijk = 0 if there are two equal indexes; εijk = 1 if the indexes are a 
cyclic permutation of (1,2,3); εijk = -1 for non-cyclic ordering.  

For 

! 

ˆ D (n, δ φ) to be unitary, 

! 

ˆ J  must be Hermitian and consequently, the 
eigenvalues must be real numbers. The relationship with rotation matrices and 
operators will be examined later on. Here, eq.(3.3.2) defines angular momentum 
in terms of commutation relations. 
 The subsections ahead are rather painful. For readers having a more 
operational view by only browsing, if at all, would do. Another possibility is to 
simply jump to the last section where the linear superposition principle is 
illustrated by using the complete basis sets for translation and rotation invariance. 
Again, I-frames are objects in real space that can be used to identify the mass 
related dynamics determining the nature of internal quantum states. Configuration 
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space is a mathematical construct used to project abstract quantum states. Keep 
this in mind if you decide to move to the last section of this chapter. 
 
 
3.3.1.Base states and eigen values  
 
The rotation operator 

! 

ˆ D ( RΘ) commutes with 

! 

ˆ 
H , namely,  

 
  [

! 

ˆ D (R Θ),

! 

ˆ 
H ] = 

! 

ˆ D ( R Θ)

! 

ˆ 
H -

! 

ˆ 
H 

! 

ˆ D ( R Θ) = 

! 

ˆ 
0 .  

 
This means that base states and their eigen values will serve to classify (label) 
energy quantum base states. 

The commutation relations eq.(3.3.2) are the key to construct base states. First, 
note angular momentum components do not commute among themselves. A 
quantum base state cannot be label simultaneously with the three of them. Only 
one component, usually taken to be

! 

ˆ J 3, is selected to generate quantum numbers 
(label), that are named here as MJ; i.e. the quantizing direction n= (0,0,1). The 
rotation matrix mixes components 1 and 2. 
 
E&E.3.3.1. Calculate the commutator of 

! 

ˆ J 
2 and 

! 

ˆ J 3 
Use the definition of commutator: 
 
  [

! 

ˆ J 
2, 

! 

ˆ J 3] = [(

! 

ˆ J 1
2+

! 

ˆ J 2
2+

! 

ˆ J 3
2),

! 

ˆ J 3] =  
  [

! 

ˆ J 1
2,

! 

ˆ J 3] + [

! 

ˆ J 2
2,

! 

ˆ J 3] + [

! 

ˆ J 3
2,

! 

ˆ J 3] =  
  

! 

ˆ J 1[

! 

ˆ J 1,

! 

ˆ J 3] + [

! 

ˆ J 1,

! 

ˆ J 3]

! 

ˆ J 1 + 

! 

ˆ J 2[

! 

ˆ J 2,

! 

ˆ J 3] + [

! 

ˆ J 2,

! 

ˆ J 3] 

! 

ˆ J 2 =  
  -

! 

ˆ J 1

! 

ˆ J 2 -

! 

ˆ J 2

! 

ˆ J 1+

! 

ˆ J 1

! 

ˆ J 2 +

! 

ˆ J 2

! 

ˆ J 1+

! 

ˆ J  = 

! 

ˆ 
0   (3.3.1.1) 

 
We have given some of the algebraic properties in an implicit manner. Record 
them for future use. 
 
 The final result is that

! 

ˆ J 
2 commute with all components of

! 

ˆ J :  
 
   [

! 

ˆ J 
2, 

! 

ˆ J ] = 

! 

ˆ 
0   (3.3.1.2) 

 
 The construction of a complete base set employs 

! 

ˆ J 
2 and one component 

! 

ˆ J k as a complete set of commuting operators; they provide appropriate labels: |J, 
MJ>. The operators fulfill the eigen value equations: 
 
  

! 

ˆ J 
2 |J, MJ> =    

! 

h
2 aJ |J, MJ> (3.3.1.3) 

  

! 

ˆ J 3 |J, MJ> =   

! 

h  MJ |J, MJ> (3.3.1.4) 
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Let us find expressions for aJ and the range of MJ as a function of J. From now on 
  

! 

h=1. 
We have shown that 

! 

ˆ J 
2 commutes with 

! 

ˆ J , but used only one projection 

! 

ˆ J 3 
to define the eigen value above. The operators 

! 

ˆ J 1 and 

! 

ˆ J 2 can be used to construct 
two non-Hermitian operators 

! 

ˆ J + and 

! 

ˆ J - called ladder operators. 
 
 

3.3.2. Ladder operators 
 
The ladder operators are defined as: 
 
  

! 

ˆ J + = (

! 

ˆ J 1+ i

! 

ˆ J 2)  
  

! 

ˆ J - = (

! 

ˆ J 1- i

! 

ˆ J 2)  (3.3.2.1) 
 
Note that the components of the angular momentum 

! 

ˆ J 1 and 

! 

ˆ J 2 do not commute; 
Cf. eq.(3.3.2). Instead, calculate now the commutation relations for the set 

! 

ˆ J +,

! 

ˆ J 2 
and 

! 

ˆ J 3. The results are: 
 
  [

! 

ˆ J 3, 

! 

ˆ J +] = 

! 

ˆ J +   (3.3.2a) 
  [

! 

ˆ J 3, 

! 

ˆ J -] = -

! 

ˆ J -   (3.3.2b) 
  [

! 

ˆ J +, 

! 

ˆ J -] = 2

! 

ˆ J 3   (3.3.2c) 
 
 Vectors obtained from 

! 

ˆ J +|JMJ> and 

! 

ˆ J -|JMJ> can be worked out if we 
apply 

! 

ˆ J 3 from the left:

! 

ˆ J 3(

! 

ˆ J + |J,MJ> ), and use of the commutation relations 
(3.3.2.2a) and (3.3.1.4) to get: 
 
  

! 

ˆ J 3(

! 

ˆ J + |J,MJ> ) = (

! 

ˆ J +

! 

ˆ J 3) |J,MJ> + (

! 

ˆ J +|J,MJ> ) =  
   (MJ +1) (

! 

ˆ J +|J,MJ> ) (3.3.2.3) 
 
Thus, the vector 

! 

ˆ J +|J,MJ> is proportional to |J,MJ+1>. Now, apply 

! 

ˆ J + to vector 
|J,MJ+1> to gets a vector proportional to  |J,MJ+2> and so on, until attaining the 
value J.  

Taking operator 

! 

ˆ J - and successively apply to |J,MJ>, the procedure leads from 
MJ-1, MJ-2 down to -J; below we cannot go. Given J, the projection may have a 
minimal and a maximum value, -J and J, respectively. The dimension 
(multiplicity) of this subspace is 2J+1. 
 Eq. (3.3.2c) is obtained once the products of ladder operators are 
constructed from the commutation relations: 
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! 

ˆ J +

! 

ˆ J - = 

! 

ˆ J 
2 - 

! 

ˆ J 
2

3 + 

! 

ˆ J 3   (3.3.2.4a) 
  

! 

ˆ J -

! 

ˆ J + = 

! 

ˆ J 
2 - 

! 

ˆ J 
2

3 - 

! 

ˆ J 3   (3.3.2.4b) 
 
It is clear that the commutator [

! 

ˆ J +

! 

ˆ J -,

! 

ˆ J -

! 

ˆ J +] = 2

! 

ˆ J 3.  
Also, 

! 

ˆ J +

! 

ˆ J -+

! 

ˆ J -

! 

ˆ J += 2(

! 

ˆ J 
2 - 

! 

ˆ J 3
2) to get: 

 
  

! 

ˆ J 
2 =(1/2)(

! 

ˆ J +

! 

ˆ J -+

! 

ˆ J -

! 

ˆ J +) +

! 

ˆ J 3
2  (3.3.2.5) 

 
E&E.3.3.2-1. Calculate aJ 
To get an answer take first the action of 

! 

ˆ J +

! 

ˆ J - because from eq. (3.3.3.4a) the 
calculation can be performed with the help of the eigen value equations for the 
angular momentum, (3.3.1.3) and (3.3.1.4). The results are: 
 

  

! 

ˆ J +

! 

ˆ J -|J,-J> = (

! 

ˆ J 
2 - 

! 

ˆ J 3
2 + 

! 

ˆ J 3) |J,MJ=-J> =  
   (aJ - J2-J) |J,-J> (3.3.2.6a) 
   

! 

ˆ J -

! 

ˆ J +|J,J> = (

! 

ˆ J 
2 - 

! 

ˆ J 
2

3  - 

! 

ˆ J 3) |J,MJ=J> =  
    (aJ - J2 -J) |J,J> (3.3.2.6b) 
 

From the second equation, 

! 

ˆ J +|J,J> must be equal zero thereby implying (aJ - J2 -
J)=0 and the result is 
    aJ =  J2 +J = J(J+1).  
 
Now, 

! 

ˆ J -|J,-J> must be zero, and eq. (3.3.3.6a) shows that again aJ =  J2 +J = 
J(J+1). Thus, aJ = J(J+1). 
  

The value for aJ obtained above permits writing down the eigen value relations 
for the product operators 

! 

ˆ J +

! 

ˆ J - and 

! 

ˆ J -

! 

ˆ J +: 
 

   

! 

ˆ J +

! 

ˆ J -|JMJ> = (

! 

ˆ J 
2 - 

! 

ˆ J 
2

3 + 

! 

ˆ J 3) |JMJ> =  
   (J(J+1) - MJ

2+MJ) |JMJ> (3.3.2.7a) 
   

! 

ˆ J -

! 

ˆ J +|JMJ> = (

! 

ˆ J 
2 - 

! 

ˆ J 
2

3  - 

! 

ˆ J 3) |JMJ> =  
    (J(J+1) - MJ

2 -MJ) |JMJ> (3.3.2.7b) 
 

Again, for a given J, the system shows a subspace of dimension 2J+1 covered by 
the projections MJ. Because the Hamiltonian commutes with 

! 

ˆ J 3 all these values 
label the same energy level: they are “degenerate”. The base set |J,–J>, |J, -
J+1>,…,|J,J-1>, |J,J> is complete for a given J. 
For a given J, the projections MJ cover the range from –J, -J+1,…,J-1,J. The 
space has a multiplicity of 2J+1. 

Total angular momentum quantum number J can have integer and half-integer 
values: 
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-Angular momentum:   J =  0, 1/2, 1, 3/2, 2,…(3.3.2.8) 
-Multiplicity:          2J+1 =  1,  2,  3,  4,   5,..  (3.3.2.9) 
 
Singlet, doublet, triplet, quadruplet, quintuplet,… To close this section, let us give 
the expression for the ladder operators. From eq. (3.3.2.3) one can write  
 
  

! 

ˆ J + |J,MJ>  = C(MJ+1) |J,MJ+1>  
  

! 

ˆ J - |J,MJ>  = C(MJ-1) |J,MJ-1> (3.3.2.10) 
Consider the maximum MJ =+J. Thus 

! 

ˆ J + |J,J>  = C(J,J +1) |J, J +1> must 
necessarily be zero. Thus, C(J,J +1)=0.  
 For the minimum value of the projection, MJ =-J. Thus 

! 

ˆ J - |J,-J>  = C(J,-J -
1) |J, -J -1> and again C(J,-J -1)=0. It can be shown that: 
 
  

! 

ˆ J + |J,MJ>  = √(J-MJ)(J+MJ+1) |J,MJ+1> (3.3.2.11a) 
  

! 

ˆ J - |J,MJ>  = √(J+MJ)(J-MJ+1) |J,MJ-1> (3.3.2.11b) 
 
E&E-3.3.2-2. Prove eqn(3.3.2.11a) 
Observe that eq. (3.3.2.7a) can be multiplied by the bra <JMJ|  to get: 
  <JMJ|  

! 

ˆ J -

! 

ˆ J +|JMJ> = (J(J+1) - MJ
2-MJ) <JMJ| JMJ>  (3.3.2.12) 

By definition, <JMJ|  

! 

ˆ J -

! 

ˆ J +|JMJ> = |

! 

ˆ J +|JMJ>|2. Using the definition 

! 

ˆ J + |J,J>  = 
C(J,J +1) |J, J +1> one gets:   
  |C(J,J +1)|2 = (J(J+1) - MJ

2-MJ) =  
  (J-MJ)(J+MJ+1)  (3.3.2.13) 
 
Retaining the positive sign in the square root one obtains eq. (3.3.2.11a). 
 
 
3.3.3. Matrix representations  
 
In general, given a base set such as the one for angular momenta or any other, Cf. 
eq.(2.1.1), a quantum state is represented by amplitudes obtained after projecting 
the state in that base set, eq.(2.1.2). An operator 

! 

ˆ O  acting on specific base set 
elements, say |aj>, generates a function in Hilbert space; this is a linear 
superposition. Use eq.(2.2.1) from the left to get: 
 
  

! 

ˆ O  |aj> = 

! 

ˆ I 

! 

ˆ O  |aj>  = Σi |ai> <ai|

! 

ˆ O  |aj>  = 
   Σi |ai> Oij  (3.3.3.1) 
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The numbers Oij arranged in a tableau of infinite rows and columns stands for the 
matrix representation of operator 

! 

ˆ O . The base set is understood. For finite 
dimension (m) base sets, the matrix is a square array of dimension m x m. 
 Some matrix representations of angular momentum operators in the base 
{|JMJ>} follow from the eigen value equations and operator relationships. For 
each J-value there is a complete set of base function of dimension 2J+1. 
  
   1) <J’M’J’|

! 

ˆ J 
2 |J MJ> = δJJ’δM’J’MJ J(J+1) (3.3.3.2) 

   2) <J’MJ’|

! 

ˆ J 3 |J MJ> = δJJ’δM’J’MJ MJ (3.3.3.3) 
   3) <J’M’J’|

! 

ˆ J 1 |J MJ> =  
  (1/2) <J’M’J’| (

! 

ˆ J + + 

! 

ˆ J - )|J MJ> δJJ’  (3.3.3.4) 
   4) <J’M’J’|

! 

ˆ J 2 |J MJ> =  
  (-i/2) <J’M’J’| (

! 

ˆ J + -  

! 

ˆ J - )|J MJ> δJJ’ (3.3.3.5) 
 
The operators of angular momentum in the base are block diagonal matrices. The 
case J=0 is a scalar base state.  
 
E&E-3.3.3-1. Calculate the matrices corresponding to eqs.(.3.3.2)-(3.3.3.5) 
above for the case J=2 
Once the J-value is fixed, the subspace has dimension 2J+1 corresponding to MJ 
that can change as –2,-1,0,1,2. The matrices will have 5x5 dimension.  
-The matrix elements <J’M’J’|

! 

ˆ J 
2|JMJ> = δJJ’δM’J’MJ J(J+1) are independent from 

MJ thereby leading to a constant (diagonal) matrix: J(J+1) = 2(2+1)=6.  
-The matrix elements <J’MJ’|

! 

ˆ J 3 |J MJ> = δJJ’δM’J’MJ MJ with J=J’ can be 
assembled in the diagonal matrix: 
   

! 

J
3
=

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 "1 0

0 0 0 0 "2

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

  

! 

J
1
=

0 1 0 0 0

1 0 3/2 0 0

0 3/2 0 3/2 0

0 0 3/2 0 1

0 0 0 1 0

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

! 

J
2
=

0 "i 0 0 0

i 0 " 3/2i 0 0

0 3/2i 0 " 3/2i 0

0 0 3/2i 0 "i

0 0 0 i 0

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

 

 
 
Give an explicit calculation of matrices J+ and J-. 
Using these matrices calculate explicitly the commutator: J1 J2 - J2 J1. Show that it 
is equal to iJ3. 
 
E&E-3.3.3-2 Calculate the matrices corresponding to eqs.(.3.3.2)-(3.3.3.5) above for 
the case J=1 
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3.3.4. Angular momentum and rotations 
 
So far, there has been no mention on rotation matrices in real space and their 
connection with angular momentum. Quantum states in Hilbert space are totally 
independent on the way we put an inertial frame including any type of rotation. In 
standard approaches, a rotation is described either by causing the axes of the 
system of coordinates (I-frame) to rotate while holding the physical objects fixed 
or by holding the axis fixed and causing the inverse rotation of the physical 
system. In the quantum state view the "object" is replaced by the coordinates base 
states |q>; there is a subtle shift from place (object location) to coordinate space 
where base state take central stage. There will always be (at least) two inertial 
frames involved to describe rotations. Thus either the I-frame rotate with base 
vector remains fixed or the base state vectors rotate with a fixed I-frame; in short, 
this is the reason for needing two frames as there are no objects; one describes the 
changes of quantum states of a material system, not the system itself. 

The infinitesimal rotation operator in eq.(3.3.1) was suggested in analogy 
to time and space displacement operators. Angular momentum was defined via 
the commutation relations eq.(3.3.2). The real space labels, n and dφ enter as 
numeric factors affecting 

! 

ˆ J . It is apparent that taken | α > as a quantum state in 
Hilbert space, 

! 

ˆ D (n,dφ)|α> does not make sense because the state | α > bear no 
connection to the parameters in real space. The ambiguity is eliminated if we 
work with this quantum state projected in configuration space:<q|α> = Ψα(q). A 
rotation cannot change the label α but it can change the argument of the wave 
function. Thus, bearing in mind that R is the rotation matrix associated to the 
operator one gets,  

 <q|

! 

ˆ D (n,dφ) = < R †(n,dφ) q| = < R -1(n,dφ) q| (3.3.4.1) 
 

and by right-multiplying with the quantum state | α >: 
 
 <q|

! 

ˆ D (n,dφ)| α > = <R-1(n,dφ)q | α > =  
    Ψα(R -1(n,dφ) q) (3.3.4.2) 
 
The state label remains invariant while the wave function depends upon rotation 
parameters. 

Euler angles are customary used to define rotations. Take the I-frame as fixed 
with the unit vectors. i1, i2, i3 and the rotated frame : i’1, i’2, i’3. To find the 
rotation axis allowing for a rotation from i3 to i’3 consider the (i1, i2)-plane 
intersecting the (i’1, i’2)-plane. The intersection line defines a vector from the 
common origin in the direction of the wedge product i3 ∧i’3. This is called n-axis 
in what follows. The angles  ∠(i2,n)= α; ∠(i3,i’3)=β and ∠(n, i’2)= γ are known as 
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Euler angles. The rotation matrix R(α,β,γ) can be written after some 
manipulations starting from the original one, Ri’1(γ)Rn(β) Ri1(α) as: 

 
 R(α,β,γ) = Ri1(α) Rn(β) Ri’1(γ)  (3.3.4.3) 
 
Using a series of properties, the rotation matrices can be expressed in terms of the 
original axis. The corresponding operator form is given by : 
 
 

! 

ˆ D (α,β,γ) =  
 exp(-i

! 

ˆ J i3 α/  

! 

h) exp(-i

! 

ˆ J i2 β/  

! 

h) exp(-i

! 

ˆ J i3  γ/  

! 

h) (3.3.4.4) 
 
Rotation functions DMM’

(J) (α,β,γ) are defined as: 
 
 DMM’

(J) (α,β,γ) = <JM|

! 

ˆ D (α,β,γ)|JM’>  (3.3.4.5) 
 
Note that even if the rotations referred to one frame, a second fame there is 
always involved.  
 
 
3.4. Addition of angular momenta 
 
This is a key theme helping in the construction of base states for complex 
systems. Only some basic elements are presented here. Again, at this stage focus 
is on the construction of base set labels characterizing the invariance of a 
quantum state towards the way we have oriented the I-frame; only one I-frame is 
involved, unless specific indications on the contrary.  
 
 
3.4.1. Addition of two angular momenta 
 
Let consider the addition of two angular momentum operators for generic systems 
1 and 2, 

! 

ˆ j 1 and 

! 

ˆ j 2 leading to a total angular momentum 

! 

ˆ j : 
  
  

! 

ˆ j  = 

! 

ˆ j 1 + 

! 

ˆ j 2  (3.4.1.1) 
 
In their respective domains the eigen equations are: 
 

   (

! 

ˆ j 1)2 |j1m1> = j1(j1+1) |j1m1> and   
   (

! 

ˆ j 1)3 |j1m1> = m1|j1m1>   (3.4.1.2) 
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   (

! 

ˆ j 2)2 |j2m2> = j2(j2+1) |j2m2> and  
   (

! 

ˆ j 2)3 |j2m2> = m2|j2m2>  (3.4.1.3) 
Now, (

! 

ˆ j )2 |j m> = j(j+1) |j m>      and  (

! 

ˆ j )3 |j m> = m |j m>.  (3.4.1.4) 
 The dimension of j-space must equal that of the direct product (2j1+1) (2j2+1) 
if subsystems are independent. The commutator [(

! 

ˆ j )1,(

! 

ˆ j )2] = 

! 

ˆ 0 12 because the 
operators act on different subspaces. There are two sets of commuting operators: 
 
   {(

! 

ˆ j 1)2 , (

! 

ˆ j 1)3 , (

! 

ˆ j 2)2 , (

! 

ˆ j 2)3 } and  
   {(

! 

ˆ j )2 , (

! 

ˆ j )3 , (

! 

ˆ j 1)2 , (

! 

ˆ j 2)2 } (3.4.1.5) 
The quantum labels are: 
    { j1 , j2 , m1 , m2} and    
   {j, m, j1 , j2 }    (3.4.1.6) 
The joint base sets are: 
   { |j1 , j2 , m1 , m2>} and    
   {| j, m, j1 , j2  >}   (3.4.1.7) 
 
The problem is to find all possible values for 

! 

ˆ j  knowing those of 

! 

ˆ j 1 and 

! 

ˆ j 2. The 
direct product set {|j1m1>|j2m2>} provides a complete base set. We know that 
{|jm>}, the eigen vectors of the total angular momentum provides a complete 
base set of dimension 2j+1. The dimension (2j1+1) (2j2+1) of the direct product 
space is then 2j+1. The problem is to find the matrix elements of the unitary 
transformation between both, equivalent, base sets. They are the Clebsch-Gordan 
coefficients. 

First we give the relationship between j1, j2 and j. The maximum value of j is 
just j1+ j2; j will decrease by one unit until getting at |j1 -j2|. That’s it. 

 
  |j1 -j2| ≤ j ≤ j1 + j2  (3.4.1.8) 
 
Thus, if we combine two systems, j1 = 8 and j2=3, the allowed values of j are: 
11,10,….4,5. The projections fulfill the rule: m=m1+m2; and –j ≤ m ≤ j. There is 
no more to it. Now, go for the base functions. 

The dimension covered by both base sets of eq.(3.4.7) are then equal to the 
numeric value 2j+1 that by construction equals the product (2j1+1) (2j2+1). The 
base set elements of one set can be expanded on the other, the amplitudes are 
called Clebsch-Gordan coefficients. 
 
3.4.2. Clebsch-Gordan coefficients 
 
The unit operators in the direct product space and in j-space are: 
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! 

ˆ I = Σm1m2 {|j1m1>|j2m2>}{< j1m1|< j2m2| }=  
   Σm1m2 |j1m1,j2m2>< j1m1, j2m2| (3.4.2.2) 
 

The index m1 varies from - j1 up to +j1; m2 range from – j2 up to +j2. 
 

   

! 

ˆ I  = Σm|jm><j m|  (3.4.2.3) 
 

The index m varies from –j up to +j. 
 Let us calculate the base state |jm> in the direct product base set: 
 
   |jm> = 

! 

ˆ I  |jm> =  
   Σm1m2 |j1m1,j2m2>< j1m1, j2m2|jm>  (3.4.2.4) 
 
The corresponding Clebsch-Gordan amplitude (coefficient) is then: 
 
   C(j1j2m1m2;jm) = < j1m1, j2m2|jm> (3.4.2.5) 
 
Calculate the amplitudes the other way round: 
 
   |j1m1,j2m2> = 

! 

ˆ I  |j1m1,j2m2> = Σm|jm><j m|j1m1,j2m2> 
     (3.4.2.6) 
We can see that the amplitudes taken as a transpose and complex conjugating 
leads to: 
  <j m|j1m1,j2m2> = (< j1m1, j2m2|jm>)† = C(j1j2m1m2;jm) 
    (3.4.2.7) 
It is common practice to have real amplitudes; thus, complex conjugation is 
superfluous, only transposition survives. 
 
 
3.4.3. Wigner coefficients: 3j symbols 
 
Any field of scientific research develops historically. This means that people in 
different societies come up with related discoveries. Without entering in more 
detail about history, let us introduce some symbols that are presently used in 
connection with angular momentum. Note that there is no rational explanation to 
the question why they look the way they do. 

An example of these coefficients is known as 3j symbols defined as: 
 

! 

j
1

j
2

j
3

m
1

m
2

m
3

" 

# 
$ $ 

% 

& 
' '  = (-1)j1-j2-m3(2j3+1)-1/2 C(j1j2m1m2;jm) 

  (3.4.3.1) 
Where we substitute j3=j and m3=m. 



 QUANTUM PHYSICAL CHEMISTRY 
 
28 

 There are a number of symmetry rules verified by these 3j symbols: 

 

  

! 

j
1

j
2

j
3

m
1

m
2

m
3

" 

# 
$ $ 

% 

& 
' '  = 

! 

 
j

2
j

3
j
1

m
2

m
3

m
1

" 

# 
$ $ 

% 

& 
' '  =  

  

! 

j
3

j
1

j
2

m
3

m
1

m
2

" 

# 
$ $ 

% 

& 
' '    (3.4.3.2) 

 
These correspond to cyclic permutation of indexes. To break cyclic ordering once 
and the 3j symbol must be multiplied by (-1)j1+j2+j3; also, if we substitute 
m1,m2,m3 by -m1,-m2,-m3, e.g. 

  (-1)j1+j2+j3 

! 

j
1

j
2

j
3

m
1

m
2

m
3

" 

# 
$ $ 

% 

& 
' '  = 

! 

  
j

3
j

2
j
1

m
3

m
2

m
1

" 

# 
$ $ 

% 

& 
' '  =  

     

  

! 

  
j
1

j
2

j
3

"m
1

"m
2

"m
3

# 

$ 
% % 

& 

' 
( (   (3.4.3.3) 

 
 
3.4.4. Addition of three angular momenta 
 
By definition, there are three different angular momentum operators and the 
resultant vector operator is sought: 

! 

ˆ J = ˆ j 
1
+ ˆ j 

2
+ ˆ j 

3
. There is no unique 

procedure to get a result. The problem can be reduced to addition of two angular 
momenta, 

! 

ˆ J ij= 

! 

ˆ j i  + 

! 

ˆ j j , the result is combined with the remaining operator again 

as a sum of two angular momenta: 

! 

ˆ J ij  + 

! 

ˆ j k . 
 Select two complete sets of commuting operators: 
 
 i) {(

! 

ˆ j 1)2 , (

! 

ˆ j 1)3 , (

! 

ˆ j 2)2 , (

! 

ˆ j 2)3 , (

! 

ˆ j 3)2 , (

! 

ˆ j 3)3 } with base set:   
  {|j1m1j2m2j3m3>} 
 ii) {(

! 

ˆ j 1)2 , (

! 

ˆ j 2)2 , (

! 

ˆ j 3)2 , (

! 

ˆ j ij)2 ,(

! 

ˆ j )2 ,(

! 

ˆ j )3 } with base set:  
  { |j1j2j3jijjm>} 
 
  jij = (ji + jj), (ji + jj)-1,…,|(ji - jj)| 
  j  = (jij + jk), (jij + jk )-1,…,| (jij - jk)| 
  mij = mi+mj, m = mij + mk = m1 + m2 + m3 
  mi = ji , ji –1,…,- ji  
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3.4.5. 6j-symbols 
 
Consider the linear superposition using the base set |j1m1j2m2j3m3> to represent 
the base vectors |j1j2j3jijjm>:  
  |j1j2j3jijjm> = Σ <jimijjmj|j1j2j3jijmij> <jijmijjkmk|j1j2j3jijjm> 
    |j1m1j2m2j3m3>  (3.4.5.1) 
 
The sum covers all possible values for m1, m2, m3 and mij with the corresponding 
Clebsh-Gordan coefficients. 

The inverse transformation is given by: 
  |j1j2j3jijjm>= Σ (jjk) < j1j2j3jjkjm| j1j2j3jijjm> | j1j2j3jjkjm > 
    (3.4.5.2) 
 
The amplitudes < j1j2j3jjkjm| j1j2j3jijjm> will be given in terms of 6j coefficients 

! 

j
1

j
2

j jk

j
3

j jij

" 

# 
$ $ 

% 

& 
' '   that are defined by: 

  < j1j2j3jjkjm| j1j2j3jijjm> = 

  (-1)j1+j2+j3+j [(2jij+1)(2jjk+1)]1/2 

! 

j
1

j
2

j jk

j
3

j jij

" 

# 
$ $ 

% 

& 
' '  = 

  [(2jij+1)(2jjk+1)]1/2 W(j1j2jj3;jjk jij) (3.4.5.3) 
 
W(j1j2jj3;jjk jij) is known as Racah coefficient; its definition follows by combining 
the last two lines above. 
 

The base sets label with so related quantum numbers is actually fixed. You 
can then go to special tables to read the actual values. Usually, a given problem 
can be formulated in one base set but the physics may require another one. Then, 
it is useful to know al least the way the connections are defined and the meaning 
of the symbols. More on this will be found in the following sections. 

 
 
3.5. Orbital and spin base functions 
  
The number of electrons and number and types of nuclei define the material 
system at hand, in analytical chemistry terms. The quantum states in Hilbert 
space and in the fence domain correspond to spin 1/2 for 1-electron states and a 
variety of nuclear spins, I ranging from half odd integers to integers. A general 
theory can be done for electron states; they show a peculiar relationship between 
spin and permutation properties of the n-electron space base functions. The 
spin/space base functions are anti-symmetric under odd permutation of the labels. 
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3.5.1. Orbital angular momentum; Spherical harmonics 
 
The orbital angular momentum operator 

! 

ˆ 
L  takes on the form from the classical 

expression: 
   

! 

ˆ 
L =  

! 

ˆ q ∧

! 

ˆ p    (3.5.1.1) 
Equation (3.2.2.3) besides Planck constant introduces the gradient operator such 
that the components read: 

   

! 

ˆ 
L 1 =  -i   

! 

h  (

! 

ˆ q ∧ ∇ )1 =  -i   

! 

h  (

! 

ˆ q 2 ∇3 - 

! 

ˆ q 3 ∇2) 
   

! 

ˆ 
L 2=  -i   

! 

h  (

! 

ˆ q ∧ ∇)2 =  -i   

! 

h  (

! 

ˆ q 3 ∇1 - 

! 

ˆ q 1 ∇3) (3.5.1.2) 
    

! 

ˆ 
L 3=  -i   

! 

h  (

! 

ˆ q ∧ ∇)3 =  -i   

! 

h  (

! 

ˆ q 1 ∇2 - 

! 

ˆ q 2 ∇1) 
 

With the help of relationships eq.(3.2.2.4) it is easy to show the commutation 
relations for the components of 

! 

ˆ 
L  actually define an angular momentum. 

Spherical polar coordinates are used to transform the operator equations (3.5.1.2): 
 
   q1= |q|sinθ cosφ; q2= |q|sinθ sinφ; q1= |q| cosθ 
   q2 = q1

2 + q2 
2+ q3

2;   
   cosθ = q3/|q| ; tan φ = q2 / q1 (3.5.1.3) 
Equations (3.5.1.2) become 
   

! 

ˆ 
L 1= i (sin φ ∂ /∂θ+ cot θ cos φ ∂ /∂φ ) 

   

! 

ˆ 
L 2= i (-cos φ ∂ /∂θ+ cot θ sin φ ∂ /∂φ ) (3.5.1.4) 

   

! 

ˆ 
L 3= -i (∂ /∂φ ) 

 
 A spinless base state besides the base ket |L,ML>, there is a radial quantum 
number (n) with a radial function FnL(r) that contains dynamic information. 
Consider the vector q' in spherical coordinates so that n' is a unit vector in the 
direction θ,φ of q', then 
  < n'|L,ML> = YL

ML(θ,φ)  (3.5.1.1) 
 
YL

ML(θ,φ) is a spherical harmonic. The spinless base set function remains useful 
for any system state invariant to frame rotations; a fortiori, it is valid whenever a 
system retains spherical symmetry. Because the base set is complete, the angular 
part of any quantum state can be expressed as a linear superposition in this base. 
Again, we are about to treat quantum states not material systems as objects. The 
eigen value equations are: 
  

! 

ˆ L 
2 YL

ML(θ,φ)=    

! 

h
2 L(L+1) YL

ML(θ,φ),  (3.5.1.2) 
   

! 

ˆ L 3 YL
ML(θ,φ)=   

! 

h  ML YL
ML(θ,φ) ;  -L ≤ ML≤ L  

    (3.5.1.3) 
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L=0,1,2,3…The operators 

! 

ˆ L 
2 and 

! 

ˆ L 3 must be taken as projected in the I-frame 
space. We give their form: 
  

! 

ˆ L 
2 → 1

sin!

"

"!
(sin!

"

"!
)
  + 1

sin
2 !

"
2

"# 2

    (3.5.1.4) 

 
Spherical harmonics are eigenfunctions of this operator that appears as the 
angular part of ∇⋅∇  = ∇2 (nabla square) that is the operator characterizing kinetic 
energy in an inertial Cartesian frame. Bearing in mind that the spherical harmonic 
can be written as a product: YL

ML(θ,φ) = ΦML(φ) ΘL
ML(θ), where (∂2 /∂φ2) ΦML(φ)  

=- ML
2 ΦML(φ) then the theta part fulfils the differential equation: 

 
  ( 1

sin!

"

"!
(sin!

"

"!
)
  + L(L+1) -  

   ML
2/sin2θ ) ΘL

ML(θ) = 0  (3.5.1.5) 
 
 Rotation matrices and spherical harmonics are closely related. Assign l 
→L, m→ML Matrix elements of a rotation operator with the angular momentum 

base set define the matrix: < l m’| ˆ D (R)| l m> = Dmm’
(l) (α,β,γ). The operator 

should transform the base ket |i3> into a ket associated to the rotation unit vector 

|n'> identified with Euler angles (α,β,γ): |n> = ˆ D (R) |i3>. Take the simple case 
where first rotate around 2-axis by θ, and by φ around the 3-axis, then β→θ and 

α→φ and γ=0, the operator ˆ D (R) = ˆ D (α,β,γ), and for the present case ˆ D (R) = 
ˆ D (α=φ,β=θ,γ=0), to finally get 

  |n> = ˆ D (R) |i3> = Σl Σm ˆ D (R) | l m>< l m|i3>  
   (3.5.1.6) 
Calculate now <l m’| n> to get 
 
  <l m’| n> = Σm Dmm’

(l)(α=φ,β=θ,γ=0) <l m|i3> 
   (3.5.1.7) 
The function <l m|i3> correspond to the spherical harmonic Yl

m*(θ,φ) evaluated at 
θ=0 at an undetermined φ and  
 
  < l m|i3> = Yl 

m*(θ=0,φ) = √((2l +1)/4π) δlm   
    (3.5.1.8) 
The rotation operator matrix elements read β→θ 
 
  Dmm’

(l)(α=φ,β=θ,γ=0) =  
  (√((2 l +1)/4π))−1  Yl 

m*(θ,φ)θ=β,φ=α  (3.5.1.9) 
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The actual derivation of this result is not as important as the relationship 
expressed in eq. (3.5.1.9) relating spherical harmonics to rotation functions. 
 Take one I-frame as fixed with the unit vectors. i1, i2, i3 and the rotated frame : 
i’1, i’2, i’3. You have above the way to set up the appropriate base set to represent 
rotated quantum states. If the symmetry of the material system is lower, the 
quantum states will reflect that situation. 
 
 
3.5.2. Spin 1/2 angular momentum 
 
Angular momentum with odd half integer is named as spin. For electron states, 
with 1, 2, 3,… base states, the total spin changes from 1/2 up to an integer if the 
number of base states is even and half integer if that number is odd: 
 
  

! 

ˆ S 
2 |S,MS> =    

! 

h
2 S(S+1) |S,MS>   

   S=1/2,1,3/2,2,5/2,3,… (3.5.2.1) 
   

! 

ˆ S 3 |S,MS> =   

! 

h  MS |S,MS>; -S ≤ MS≤ S  (3.5.2.2) 
 
Combined with the symbols for orbital angular momentum L=0 → S, L=1 → P, 
L=2 → D, L=3 → E, L=4 → F, etc., the spin multiplicity appears as a left supra 
index and total angular momentum as right sub index: 2S+1LJ. Rules for addition 
of angular momenta are examined below (Sect.3.5.3). 
 For a one-electron spin base J=1/2=s; low case letters are used to indicate 
single electron base configurations. The multiplicity is 2s+1=2, the operators are 
given by sets of 2x2 matrices known as Pauli matrices that we construct below.  
 Particle-states of spin 1/2 have three basic properties: 
  -1) The vector operator 

! 

ˆ S  does not depend upon space coordinates. 
  -2) The addition of 

! 

ˆ L  and 

! 

ˆ S  leads to the total angular momentum operator

! 

ˆ J . 
  -3) A spin quantum state |s> is a linear superposition in the base set with 
elements: 
   |S=1/2,MS=+1/2> and |S=1/2,MS=-1/2>.  
It is common practice to alleviate this nomenclature to write |1/2> and |-1/2> or 
|+> and |-> or in some other cases |0> and |1>. Thus, using the symbol  [<+1/2|s>   
<-1/2|s>] as a column vector where its elements are the amplitudes of the linear 
superposition and the row vector (|+1/2>  |-1/2>) the element of which are the 
base vectors the quantum state |s> can be cast in two complementary ways as: 
 
  |s> = <1/2|s> |1/2> + <-1/2|s> |-1/2> =   
  (|+1/2>  |-1/2>) . [<+1/2|s>   <-1/2|s>]  (3.5.2.3) 
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If the system is in the state [1  0] we see that |s> maps directly onto |+1/2> 
according to the first line in this equation while the second line emphasizes the 
fact that the basis functions actually do not “disappear”. The state  [1  0] is known 
as a pure state. Also, [0  1] is another pure state. 
  The direction 3 is taken to carry out a measurement of 

! 

ˆ S , the result can be 
only one of its two eigen values, +  

! 

h /2 or -  

! 

h /2. Notation has been simplified. The 
case where the measurement direction differs from the standard one is examined 
below.  
 Pauli spin operators {

! 

ˆ " j}j=1,2,3 are simply defined as: 
 
  

! 

ˆ s j = (  

! 

h /2) 

! 

ˆ " j ; j=1,2,3  (3.5.2.4) 
 
The commutation relations permit writing down the matrices in the base set  
[|+1/2> |-1/2>]: 
  

! 

ˆ " 1 = 

! 

0 1

1 0

" 

# 
$ $ 

% 

& 
' ' 
; 

! 

ˆ " 2 = 0 i

!i 0

" 

# 
$ 

% 

& 
' 

; 

  

! 

ˆ " 3 = 1 0

0 !1

" 

# 
$ 

% 

& 
' 
  (3.5.2.5) 

1-electron spin space. There are subtle relationships between rotations in real 
space and spinorial quantities. Whatever the direction of spin quantization you 
may choose, the base states will always be [|+1/2> |-1/2>]; but if you look at the 
projections from the original frame things look differently. 

In terms of Pauli 2x2 matrices spin vector operator 

! 

ˆ s =(

! 

ˆ s 1,

! 

ˆ s 2,

! 

ˆ s 3) is similar to 
those found in eq.(3.5.1.4). The base set in quantum chemical pictorial labeling is 
column vector [|↑>  |↓>] for so-called spin up and down states;  
  

! 

ˆ s 3|↑> = (1/2) |↑>, 

! 

ˆ s 3|↓> = -(1/2) |↓>  
 

! 

ˆ s 
2|↓> = (1/2) (1/2 + 1) |↓> =3/4 |↓>;  

 

! 

ˆ s 
2|↑> = (1/2) (1/2 + 1) |↑> =3/4 |↑>. 

With a transpose conjugate of the base row vector defining a column base vector 
in bra-space, a 2x2 unit matrix operator is given as: 
 1= (<↑|  <↓|) ⊗ [|↑>  |↓>]    
The unit operator 

! 

ˆ 
1 = |↑><↑| + |↓><↓| completes the mathematical objects used in 

this context. 
For a one-electron system, an arbitrary quantum spin state (|Z>) is a linear 

superposition: 

 |Z> =

! 

ˆ 
1  |Z> = (|↑><↑| + |↓><↓| ) |Z> =  

  |↑> α(Z) + |↓> β(Z) =  
   (|↑>   |↓>) • [α(Z)   β(Z)]   (3.5.2.6) 
 
The amplitudes α(Z)= <↑| Z>  and β(Z)= <↓| Z>  define the quantum state and 
are represented by a column vector.  
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The states |Z=0> and |Z=1> relate to standard spin representation used in 
molecular physics; these states are defined by α(Z=0)=1, β (Z=0) = 0 and 
α(Z=1)= 0, β(Z=1) = 1. The α and β spin functions commonly used in chemistry 
must be mapped to the row vectors (1  0 ) for α  and (0  1 ) for β ; < Z’=1| Z=0> 
= 0. Thus the correct representation of quantum state |Z> is given by the second 
line of eq.(3.5.2.6). The spin space is two dimensional; this is the aspect that must 
be emphasized and one should understand the first line in the above equation as a 
short hand notation. Thus the base is just: (α   β ) ⇔(|↑>   |↓>) while the quantum 
state is given as a column spinor, [Cα  Cβ]. To this column vector corresponds a 
quantum state |ψ> = [Cα  Cβ]. As usual, the amplitudes are a function of the 
quantum state, namely, Cα(ψ) = <↑|ψ> and  Cβ(ψ) = <↓|ψ>.  

The apparatuses designed to measure spin-related responses are local. Let e1, 
e2 , e3 be orthonormal unit vectors and found the direction of the spinor [Cα  Cβ] 
with respect to the unit vector e3. For the quantum state |ψ> the set of numbers 
{<ψ| σ i |ψ> = ni} form the components of a unit vector n: 

  
 n1= Cα Cβ* + Cα*Cβ; n2= i(Cα Cβ* - Cα*Cβ);  
 n3= CαCα* - Cβ*Cβ.  (3.5.2.7) 
 
These components are real numbers. Calculating |n|2 from the components we 
check that it is a unit vector in 3-space. Introducing polar coordinates one gets for 
a unit vector n: n1= sin(θ) cos(φ); n2= sin(θ) sin(φ); n3= cos(θ) where θ is the 
angle between n and the frame 3-axis, φ is the angle between 1-axis and the 
projection of n on the (1,2)-plane, i.e. |n| sin(θ).  

In Hilbert space, Cα = cos(θ/2) exp(iγ) and Cβ = sin(θ/2) exp(iδ). Using the 
definition φ = (γ-δ)/2 the quantum state in spinorial form is given as: 

 
 |ψ> →  
 [cos(θ/2)exp(-iφ/2)   sin(θ/2)exp(iφ/2)] exp(i(γ+δ)/2) 

  (3.5.2.8) 
The overall phase is usually ignored; observe, however, that this phase contains 
information about the frame orientation with respect to one that is fixed. Thus, 
|ψ> relates Hilbert space quantum state amplitudes Cα and Cβ to the real 3-space 
unit vector. Note the change from θ to θ/2 implied by the map. 

A different situation obtains if the axis n stands for an external field of an 
apparatus (e.g. Stern-Gerlach) that can be changed at will by an experimenter; 
this is equivalent to a “rotating” frame. But the quantization direction is fixed as 
we use a canonical base set; but the direction of measurement is different. We 
want the result expressed in the canonical base so one can compare results with 
respect to a fixed frame. 



 CHAPTER 3. QUANTUM THEORY IN SPACE-TIME I-FRAMES 
 

35 

Let the direction n may signal a rotated 3-axis using an axis perpendicular to 
the plane made by e3 and n. For φ=0, e1-axis is the rotation axis. 

In this new frame n can be taken as spin state quantization direction; note that 
you will be carrying on the experiments and decide about axes. If we want to 
measure the spin state with respect to the un-rotated frame the result is embodied 
in the amplitudes of eq.(3.5.2.5) below. Calculate the spin components after a 
rotation moving 3-axis to direction n with rotation axis perpendicular to the plane 
(e3,n); the rotation matrix in Hilbert space is given by the matrix elements: 
R11=R22= cos(θ/2), R12 = -sin(θ/2) and R21= sin(θ/2) and the rotated 2-spinor is 
(fixed frame): 

 [Cα 
rot  Cβ

 rot] →  
 [{Cαcos(θ/2)-Cβsin(θ/2)}   {Cαsin(θ/2) + Cβcos(θ/2)}]  
  (3.5.2.9) 

Consider the case Cα = 1 and Cβ = 0; this spin-polarized system becomes: 
[cos(θ/2) sin(θ/2)]. Now, for θ=π the spinor is [0   1]. Polarization is inverted. 
Rotating the measuring frame by θ=2π one gets [-1   0], the quantum state is 
reflected compared to the initial one. And, taking the measuring system frame 
with θ=π/2, a linear superposition with equal amplitudes obtains. 
  In general, non-zero amplitudes indicate that the canonical quantization 
direction has been rotated. Moreover, the number of spin states is infinite while 
the material system is just one “particle” in real space. A particle model is then 
rather unsuitable in abstract spin space. 
 
 
3.5.3. Electron-state base functions 
 
An electron base state correspond to angular momentum J=1/2 multiplied by a 
space base function. The space base function is label with integer Js and a radial 
function independent from orientation. These are spin (

! 

ˆ S ) and orbital (

! 

ˆ L ) angular 
momenta. The total angular momentum for base states is 

! 

ˆ 
J = 

! 

ˆ 
L  +

! 

ˆ S . 
 For a material system with n-electrons, the orbital and spin angular 
momentum operators are taken as the sum of elementary momentum 

! 

ˆ l i and 

! 

ˆ s i: 
 
  

! 

ˆ 
L  = Σi 

! 

ˆ l i  ;  

! 

ˆ S .= Σi  

! 

ˆ s i ; and   
  

! 

ˆ 
J = Σi 

! 

ˆ j i = 

! 

ˆ 
L  + 

! 

ˆ S  = Σi (

! 

ˆ l i + 

! 

ˆ s i ) (3.5.3.1) 
 
The eigen value equations are  
 
  (

! 

ˆ l i)2 |li mli > =   

! 

h
2 li(li +1) |li mli > (3.5.3.2) 

and 
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  (

! 

ˆ l i)3 |li mli> =   

! 

h  mli |li mli > (3.5.3.3) 
For the spin: 
  (

! 

ˆ s i)2 |si msi> =   

! 

h
2 si(si +1) |si msi> (3.5.3.4) 

and 
  (

! 

ˆ s i)3 |si msi> =   

! 

h  ms |si msi> (3.5.3.5) 
 
 
E&E.3.5-1. Calculate atomic states for specific configurations 
Consider O+3 (OIII) with the configuration 1s22s22p3d determine the electronic states 
2S+1LJ. The spectroscopic symbols are: L=1→S; L=2→P; L=3→D; L=4→F. 
 L=Σi li for the present case only open shells contribute. Then L=2+1, and the range for 
the states is L=3,2,|3-2|. Thus, we have states P,D,F. 
 S= Σi si = 1/2 + 1/2 = 1. Possible values S=1,0; multiplicities 3 (triplet) and 1(singlet). 

In the Russel-Saunders scheme there are the following states: 3F and 1F; 1D and 3D; 1P 
and 3P. 
Calculate the values of J=L+S. 
 Take 3F corresponding to 3+1=4=J. Thus J=4,3,|3-1|. We get: 3F2, 3F3, 3F4. 
 Take 1F corresponds to J=3: 1F3 is the only J-term. Calculate the remaining cases. 
 
3.5.4. Nuclear spin systems 
 
Spin quantum numbers I for nuclei varies from I=0 up in units of spin 1/2: 
0,1/2,1,3/2,…. The standard base functions fulfill equations: 
 
  

! 

ˆ 
I 

2 |I,MI> =    

! 

h
2 I(I+1) |I,MI>   (3.5.4.1) 

I=0,1/2,1,3/2,2,5/2,3,… 
  

! 

ˆ 
I 3 |I,MI>. =   

! 

h  MS |I,MI>.    -I ≤ MI≤ I (3.5.4.2) 
 
The commutation relations between the components of 

! 

ˆ 
I  and 

! 

ˆ 
I 

2 are similar to 
those defined for the generic angular momentum operator, 

! 

ˆ J . 
 For a set of m-nuclei relations similar to eqs.(3.3.4.1): 
 

   

! 

ˆ 
I = Σk=1,m 

! 

ˆ 
I k    (3.5.4.3) 

 
Each individual nuclear angular momentum fulfill the standard equations: 
 
   (

! 

ˆ 
I k)2 |I k,M Ik > =    

! 

h
2 I k (I k +1) |I k,MIk > (3.5.4.4) 

   (

! 

ˆ 
I k)3 |I k,MIk >  =    

! 

h  MIk |I k,MIk > (3.5.4.5) 
 
Now, the total angular momentum reads, 

! 

ˆ 
J +

! 

ˆ 
I = 

! 

ˆ 
F . 
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 The matrix elements of these operators, including ladder operators are similar 
to those given in Eqs.(3.3.2-5). We do not need to say anything more in this 
respect. 
 So far we have been in the business to calculate base states and quantum 
numbers helped by invariance properties. Below, we hint at some application of 
nuclear spins; they are essential in analytical chemistry; the field of nuclear 
magnetic resonance (NMR) is a chapter important in Physical Chemistry. 
 
E&E.3.5.4-2. Study effects of external magnetic field B on NMR spectra 
Full invariance to rotations is lost when the material system is submitted to the field B. 
The NM-spectrum responds by a splitting of the multiplicity covered by (

! 

ˆ 
I )2; for an 

eigen value  I,  there are 2I+1  level sharing the same energy; we say that in absence of an 
external (to the 1-system) magnetic field the energy spectrum is degenerate.  

Let Eo be the energy of the 1-system for B=0; The interaction Hamiltonian is given 
by: 

! 

ˆ V =A

! 

ˆ 
I 3 •B. This operator is diagonal. Take first a positive constant A. The energy 

for a given base state |I ,MI >| Eo> is then given by: EoIMI  = Eo + A BMI. We take the 
value of of the field fixed at B, then for the maximum value of MI=I the energy difference 
EoIMI=I  - Eo is positive for A positive; the lowest value of MI=-I and the energy level is 
below Eo and EoIMI=-I  - Eo is negative and equal to -A B I. The energy difference between 
the maximum and minimum is just 2 A B I.  
 
The 1-system in a magnetic field can be put into a linear superposition in the 2I+1 base 
set for the projections of the angular momentum vector. 
 
 
3.6. Irreducible tensor operators 
 
So far, the I-frame system has been taken in isolation. The base sets required to 
represent rotation invariant situations have been worked out. A common 
situation, however, is to find out an I-frame system interacting with external 
systems showing lower rotation symmetries. The interaction operators may be 
scalar (j=0), vector (j=1), quadrupolar (j=2), etc. 

In general, generators of the unitary group U(2l+1) are named irreducible 
tensor operators (ITO) and are defined via commutation relations with the angular 
momentum operators: 

! 

ˆ J 3, 

! 

ˆ J + and 

! 

ˆ J -. An ITO of rank k is denoted by 

! 

ˆ 
T 

K and has 
(2K+1) components 

! 

ˆ 
T 

K
q with the following commutation properties: 

 
  [

! 

ˆ 
J 3,

! 

ˆ 
T 

K
q] = q 

! 

ˆ 
T 

K
q ; [

! 

ˆ 
J ±,

! 

ˆ 
T 

K
q] =  

  ((K±q+1)(K   

! 

m  q+1)1/2 

! 

ˆ 
T 

K
q±1  (3.6.1) 

 
Analogous spin operators, 

! 

ˆ 
T 

K
q(S), allow for K=0 or 1, only. 
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In Cartesian frames for a given vector q with angular coordinates (θ,φ) the 
irreducible tensor operator is given as: 

! 

ˆ 
T 

K
q(q) = (4π/(2K+1))1/2 YK

q(θ,φ). 
Tensor operators form two non equivalent classes: angular momentum tensors, 

e.g. 

! 

ˆ 
T 

K
q(J) named polar tensor operators and Cartesian tensors, e.g. 

! 

ˆ 
T 

K
q(q) 

named axial tensor operators. They fulfill the following commutation properties: 
 

  [

! 

ˆ 
J 

2,

! 

ˆ 
T 

K
q(J)]= 0 and  

  [

! 

ˆ 
J 

2,

! 

ˆ 
T 

K
q(q)]=   

! 

h
2 (K(K+1) 

! 

ˆ 
T 

K
q(q)] (3.6.2) 

 
An operator product is defined in analogy to the rules of angular momentum 
combination: 
  [

! 

ˆ 
T 

K1(α)x

! 

ˆ 
T 

K2(β)]K
q =  

  Σ q1 q2 <K1q1K2q2|K1K2Kq> 

! 

ˆ 
T 

K1
q1(α) x 

! 

ˆ 
T 

K2
q2(β) 

   (3.6.3) 
 
3.7. Wigner-Eckart theorem 
 
Consider the matrix element of <JM|

! 

ˆ 
T 

K
q|J’M’>. The following equation holds. 

  <JM|

! 

ˆ 
T 

K
q|J’M’> = (-1)J-M 

! 

J K J '

M q M '

" 

# 
$ $ 

% 

& 
' ' 
 <J||

! 

ˆ 
T 

K||J’> 

    (3.7.1) 
Axial tensor operators have only diagonal reduced matrix elements. For polar 
tensor operators from the properties of spherical harmonics one gets: 
 
  <L|||

! 

ˆ 
T 

K(q)||L’> = (-1)L (2L+1)(2L’+1) 

! 

L K L'

0 0 0

" 

# 
$ $ 

% 

& 
' ' 
 

    (3.7.2) 
For |L-L’| ≤ K ≤ L+L’ and K+L+L’ an even integer number, these operators have 
non-zero reduced matrix elements between states of different angular momenta. 
 
 
3.8. Discrete Symmetries 
 
 
So far, continuous transformations have helped finding labels for base states. 
Translations in space-time and space rotations have been examined. Booster 
transformation where the angles between time and space axes are changed will be 
used later on with relativistic equations.  
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 As pointed out in section 3, mapping relating two frames, obtained from one 
another after translation in time and a general rotation of the space-time frame, 
defines the set of Lorentz transformations (LTs). Let a  be a 4-vector representing 
an origin displacement and Λ  a rotation 4x4 matrix. Lorentz transformations 
L(a;Λ) leave invariant ds2, i.e. the scalar product. The homogeneous LT is 
defined by: L(a=0;Λ) = Λ. 
 The metric matrix (tensor) in eq.(3.2), named now as G, is invariant to a LT. 
This translate in the form: 
  ΛTGΛ = G  (3.8.1) 
The matrix elements of G are Goo= Goo =1, G11= G11= G22= G22= G33= G33= -1; 
the off-diagonal elements being zero. The matrix ΛT is the transpose of Λ. The set 
of matrices satisfying this equation form a group, the homogeneous Lorentz 
group.  

The time component of the LT satisfies the relation: 
  (ΛTGΛ)oo= (Λoo )2– Σk (Λko)2 = 1 (3.8.2) 
Thus, for real transformations if Λoo ≥ 1 we have an orthochronous LT 
transformation; if Λoo ≤ -1 the LT is non-orthochronous. Together with the 
condition on the determinant (±1), there are four classes of real transformations. 
Because the matrix element Λoo cannot be brought continuously from a value 
greater than one to a value less than –1 and neither the determinant can be 
changed continuously from +1 to –1, the four classes are disconnected. These 
classes can be characterized by one of the four basic transformations: 1, P, T, or 
TP where P is space inversion (parity) and T is time reversal; 1 is the identity 
transformation imposed by the group structure of LTs. 

Let symbolically characterize the four classes of Lts: 
L↑

+ : Λoo ≥ 1 and det Λ=+1 named as orthochronous proper restricted group, 1; 
L↓

+ : Λoo ≤ -1 and det Λ=+1 named as non-orthochronous proper, TP; 
L↑

- : Λoo ≥ 1 and det Λ=-1 named as orthochronous, improper, P; 
L↓

- : Λoo ≤ -1 and det Λ=-1 named as non-orthochronous improper, T. 
Note the following mappings: 
 
  P (L↑

+ )→ L↑
-   (3.8.3) 

  T (L↑
+ )→ L↓

-  (3.8.4) 
  T P (L↑

+ )→ T(L↑
-) → L↓ (3.8.5) 

 
 
3.8.1. Parity 
 
Parity transformations 

! 

ˆ P  belong to the L↑
- class. For a base ket |xo,x1,x2,x3> =  

|xo> |x1,x2,x3>  the operator 

! 

ˆ P  acts only on the space part: 
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! 

ˆ P |x> =

! 

ˆ P |x1,x2,x3> = |-x1,-x2,-x3> = |-x> (3.8.1.1) 
 

For the momentum space 
 

   

! 

ˆ P |p> =

! 

ˆ P |p1,p2,p3> = |-p1,-p2,-p3> = |-p> (3.8.1.2) 
 
With the help of the identity, (

! 

ˆ x -x’)|x’> = (x’-x’) |x’> = 0, we can show that: 
 

   

! 

ˆ P 

! 

ˆ x  (

! 

ˆ P )-1 = - 

! 

ˆ x   (3.8.1.3) 
 

Analogously, 
   

! 

ˆ P 

! 

ˆ p  (

! 

ˆ P )-1 = - 

! 

ˆ p   (3.8.1.4) 
 
Vector operators changing sign under operation 

! 

ˆ P  that is equivalent to a full 
reflection are called polar vector operators. 
 The operator 

! 

ˆ P  considered as a reflection operator also is a unitary 
operator. 

! 

ˆ P 
2= 

! 

ˆ 1  and the eigen values are ±1. These eigen values are called parity. 
 The relationship between parity and reflection operator applies for full 
reflection. If you take only two axes for reflection, there will be a surprise. The 
transformations with two axes are related to the unit operator in a continuous 
manner. These latter do not represent a parity operation. Also, if only one axis is 
reflected, then you have changed the hand of the I-frame. 

Finally, consider an angular momentum base function: |l m>. Projecting in an 
I-frame with (

! 

ˆ P |x>)† = <x|

! 

ˆ P  = <-x| we have: 
 

   <x|

! 

ˆ P  | l m>= <-x| l m> = Ylm(-nx) (3.8.1.5) 
 
But Ylm(-nx) = Ylm(π−θ,φ+π) = (-1)l Ylm(θ,φ) and  
 
   <x|

! 

ˆ P  |l m> = <-x|l m> = Ylm(-nx) =  
   (-1)l Ylm(θ,φ) (3.8.1.6) 
 
The parity of the angular momentum base state is (-1)l. 

If the Hamiltonian is invariant to reflection, namely, [

! 

ˆ H 

! 

ˆ P ,

! 

ˆ P 

! 

ˆ H ] = 0, then the 
eigen values of 

! 

ˆ P  can be used to label base quantum states. Base states with 
different parity are orthogonal. 
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3.8.2. Time reversal 
 
Unitarity implies introduction of complex numbers. The equation (1.3.1.1), 
Schrödinger time dependent equation is linear in time axis with imaginary axis: 
(i  

! 

h) ∂|Ψ,t>/∂t. We know that time inversion is not a simple operation: T (L↑
+ )→ 

L↓
-. There is a component of time inversion. For the time evolution operator time 

reversal would imply a reversal of the imaginary axis so that one would expect: i 
→ -i. But you know that inverting one axis the frame changes hand, or a 
reflection of space must be expected: L↓

-.In Hilbert space one takes care of these 
subtleties with two operations: 

! 

ˆ T = 

! 

ˆ U  

! 

ˆ K  where 

! 

ˆ K  complex conjugate everything 
to its right and 

! 

ˆ U  is a unitary operator such that 

! 

ˆ U 
-1 i 

! 

ˆ U = i. This operator just 
replaces t by –t  and it has a phase factor that we choose equals to one. Thus,  
 

   

! 

ˆ T exp(i( k⋅x-Et)/  

! 

h) = 

! 

ˆ U 

! 

ˆ K  exp(i( k⋅x-Et)/  

! 

h) =  
   

! 

ˆ U exp(-i (k⋅x-Et)/  

! 

h) = exp(-i (k⋅x+Et)/  

! 

h) =  
   exp(i (-k⋅x-Et)/  

! 

h)  (3.8.2.1) 
 

Thus ψ’(t) ∝ exp(-iEt) while ψ(t)∝ exp(-iEt) has the same behavior. The plane 
wave is moving opposite to the initial plane wave direction, as it should. 
 Consider now the non-relativistic spin 1/2 base states (Section 3.5.2):  
 

  α=

! 

1

0

" 

# 
$ 
% 

& 
'   and  β = 

! 

0

1

" 

# 
$ 
% 

& 
'  

 
For time reversal one would expect a spin flip α to β (or vice versa). The operator 

! 

ˆ U  must be a 2x2 matrix flipping the base functions, namely a Pauli matrix:

! 

ˆ U  = 
η

! 

ˆ " 2. With the matrices defined in (3.5.2.5) we get 
 

   

! 

ˆ T 

! 

1

0

" 

# 
$ 
% 

& 
' = 

! 

ˆ U  

! 

ˆ K  

! 

1

0

" 

# 
$ 
% 

& 
'  = η

! 

ˆ K  

! 

ˆ " 2 

! 

1

0

" 

# 
$ 
% 

& 
'  =  

   η

! 

ˆ K  (-i) 

! 

0

1

" 

# 
$ 
% 

& 
'  =  i η

! 

0

1

" 

# 
$ 
% 

& 
'  (3.8.2.2) 

 
From this equation we calculate  
 
  

! 

ˆ T 
2 = 

! 

ˆ U  

! 

ˆ K 

! 

ˆ U  

! 

ˆ K = = η

! 

ˆ " 2

! 

ˆ K η

! 

ˆ " 2

! 

ˆ K =  
  η

! 

ˆ " 2η∗

! 

ˆ " 2*

! 

ˆ K 

! 

ˆ K = -1   (3.8.2.3) 
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This is the origin of Kramer’s degeneracy for spin 1/2 base states.  
 Time reversal operation applied to a closed quantum mechanical system 
lead to a reversible time evolution. In fact, from the structure examined so far, 
there is no clue as to the way one could distinguish future from past. Special 
relativity does it. But the theory, so far has not been developed in a fully 
relativistic framework; see Chapter seven. The point we want to make is the 
following. A quantum mechanical analysis of a given situation cannot just rest on 
the special case. From the beginning, all possibilities must be included. Thus, if a 
measurement is to be done locally, this is all right, but the formalism must 
contemplate all alternatives that can be measured in the future. By the same 
token, it must include all possible experimental initial setups. Only the amplitudes 
will distinguish situations for specific cases. The formalism must necessarily be 
reversible. 
 
 
3.8.3. Double groups 
 
For spin 1/2 base functions a rotation by 2π produces the same result as the 

! 

ˆ T 
2-

operator, it changes the sign. For molecular systems related to point group 
symmetries having half-integral angular momentum the group operations must be 
enlarged so that this 

! 

ˆ T 
2-operator property can be incorporated. In the literature 

this type of rotation (! ) applied to each group operation double the group 
dimension. If g is an element of the group, new elements obtain as products g! ; 
for single-valued representations, characters of elements g! are the same as g.  
 
 
3.8.4. Permutation symmetry 
 
The issue here is the correct definition of base sets for a set of n 1-systems. 
Material systems that can be decomposed into n-elements each one sharing the 
same material parameters, mass, charge and spin are of special interest.  
 The base state |kk’> of each 1-system is used to construct a direct product 
base set for the n identical 1-systems. This is identified by a set of labels 
embodied in the symbol gkk:   
 
  |gkk> = | k1k1’, k2k2’, …, khkh’, …, knkn’>  
 
characterizing for the k-th member of the set.  
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 Once we have chosen a particular set of 1-system base states and keeping 
the first label ranged from 1 to n, the assignment of base states chosen from a 
fixed pool is totally arbitrary. Let us do a permutation 1↔h and get   
 
  P1h | k1k1’, k2k2’, …, khkh’, …, knkn’> =  
  | k1kh’, k2k2’, …, khk1’, …, knkn’>  (3.8.4.1) 
 
Now apply the permutation P1h again: 
 
  P1h

2 | k1k1’, k2k2’, …, khkh’, …, knkn’> =  
  P1h | k1kh’, k2k2’, …, khk1’, …, knkn’> = 
  | k1k1’, k2k2’, …, khkh’, …, knkn’>  (3.8.4.1) 
 
The following identity is fulfilled: P1h

2 = 1 and consequently P1h = ± 1. The 
quantum number of the permutation operator permits identifying symmetric base 
states (P1h = + 1) and distinguishing from the anti-symmetric ones P1h = - 1. 
 The key to the symmetry property is found in the fact that there are n 
identical 1-systems. Thus, if you order them in a given manner and then change 
that order without looking to the internal labels, the new ordering is just the same 
as the preceding one. The reason is trivial: a particular ordering cannot 
differentiate identical systems. This is the reason why one chooses the canonical 
ordering and keeps it as a reference. 
 Once the canonical order (arbitrary but fixed) is retained, the internal labels 
may be different. Thus, it makes sense to compare different orderings of the state 
labels.  
 We turn now to the projections on to a configuration space with base vectors:  
  |q> = | q1,…, qh,…, qn>.  
The order used to range the coordinate system is irrelevant, jus as it was above. A 
base function is given as:  
  <q|gkk’>  =  
  < q1,…, qh,…, qn| k1k1’, k2k2’, …, khkh’, …, knkn’>.  
The notation is somewhat redundant and for this reason we simplify it with the 
replacement <q|gkk’>→<q|gk’>: 
   <q|gk’> =  
   < q1,…, qh,…, qn| k1’, k2’,…, kh’,…, kn’> (3.8.4.2) 
 
The key lesson is that permutations do not apply to the configuration space but to 
the base state space. Here, it is understood that it is the set of base state labels that 
is permuted; the order assigned to the configuration space is kept fixed so that it 
serves comparison purposes. 
 One of the most spectacular properties of anti-symmetric base states 
concerns the individual base functions (labels) that are allowed in. If any two 
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individual base states are identical, say k1’= kh’= k’ when applying the P1h 
operator one gets the result: 
  < q1,…, qh,…, qn| k’, k2’,…, k’,…, kn’> =  
  -< q1,…, qh,…, qn| k’, k2’,…, k’,…, kn’> (3.8.4.3) 
 
There is only one number that is equal to its negative: zero. Thus, all labels used 
to identify base states must be different from each other. 

For spin 1/2 or 3/2 or any odd half integer, an assembly of n-identical 1-
systems must show anti-symmetric base states. This is a system of n-fermions. 

 For fermionic systems, according to eq.(3.8.4.3) base states can only be used 
once. This is another form of Pauli exclusion principle.  

For integer spin, there is no restriction on the number of times a base state can 
be used. Base states including spin that are symmetric under permutations are 
known as bosons. 
 
E&E.3.8.4. Show that symmetric and anti-symmetric base states are orthogonal 
Let |S> and |A> be two base states whatsoever. A permutation operator 

! 

ˆ P  acts as 
follows: 

! 

ˆ P |S>=+|S> and 

! 

ˆ P |A>=-|A>. Remember that 

! 

ˆ P 
2=

! 

ˆ 1 = 

! 

ˆ P 
†

! 

ˆ P  =

! 

ˆ P 

! 

ˆ P 
†. We form 

now <S|A> and operate as follows: 
  <A|S> = <A|

! 

ˆ 1 |S> = <A|

! 

ˆ P 
†

! 

ˆ P |S> = - <A|S> 
The result is always zero. The base sets belonging to symmetric and anti-symmetric 
spaces are orthogonal. 
 
 
3.9. Symmetry principles 
 
Symmetry principles play a fundamental role in the quest for “good” quantum 
numbers. These are used to label states that in turn are pillars in constructing 
general quantum states. In previous sections we have tried to differentiate as 
much as possible the difference between these two elements constituting a Hilbert 
space. But we have gone along a non-relativistic path; one means with such 
statement that one treat time and space separately, space-time, while a relativistic 
approach consider a 4-dimensional spacetime. 

The introduction of a 1-system as the set of quantum states sustained by a 
particular material system permits treating symmetry properties in a general 
manner.  Base states for a 1-system formed by one material object called free 
particle, are given by unitary irreducible representations of the Poincaré group, 
namely, the group formed by the translations and Lorentz transformation in the so 
called Minkowski space. This latter is the rotation group in the space of 
dimension four. 
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Thus, if one gets all unitary irreducible representations of the Poincaré group 
then a complete base set obtains. A little more elaboration can be found in the 
chapter on relativistic equations. 
  
 
3.10. Radiation quantum states and interactions 
 
Radiation is a material system showing zero restmass and finite angular 
momentum. 

In this section we take a short cut to present some important aspects of the 
electromagnetic field as an energy carrier mediating interactions between 
quantum material systems. 
 In Special Relativity the finite speed of light relates time to space dimensions. 
The inertial frame concept has been used to relate quantum states belonging to 
abstract Hilbert space to projected quantum states associated to a particular I-
frame where configuration space comes in. In this chapter, invariance of an 
arbitrary quantum state to translations and rotations of the I-frame has been used 
to get explicit forms to the corresponding wave functions (quantum states 
projected in a configuration space). 
 Thus, for a material system, a 1-system, supporting quantum states that are 
able to hold the total mass of its constituents in such a way they can be assigned a 
location at the origin of the I-frame, or another bound distribution, energy 
exchange could be described by changing the internal quantum state via 
interactions. For a radiation field, the problem, if there is one, would be that the 
material system sustaining the internal quantum states ought to have zero rest 
mass; the trick used so far does not work in constructing basis states. 
 Yet, energy exchanges between the EM fielf and a material system elicit a 
quantization discovered by Planck (1900): the energy exchanges in energy 
packages dubbed as photons. Thus, energy exchange is quantized. 
  Experimentally we know that EM radiation is generated by sources located in 
laboratory (real) space. And detectors located also in real space can sense it. 
 An I-frame can hence be located at the source and another at the detector; a 
laboratory distance can naturally be calculated.  A direction of emission can be 
established and designated by k with origin at the source. From classical 
electrodynamics we know that to each k an energy is assigned: c|k| = hω. The 
r.h.s comes from quantum physics. Thus, in the modulus (length) of vector k one 
can encode the quantum of energy. Thus, experimentally one determines the 
origin of emission so that its direction fits the one where a detector is located. 
Along that direction we know that a quantum of EM energy can be exchanged 
there; we do not need to put a detector but can make the system interact with 
another device to change some elements of the system; its quantum state as it 
were. 
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 We are in front of an interesting situation that is a typical Fence state of 
affairs. On the one hand there is an energy exchange between a source and a sink 
that shares clear classical features: systems localized in real space. On the other 
hand, both the source and sink must have quantum states such that a change 
affecting them can be described as a quantum process. 
 A quantum description requires the construction of bases states. In what 
follows discussion concerning momentum states is presented first to illustrate one 
way to sense interactions occurred once the system is prepared. Thereafter, we 
introduce a simple model to construct bases functions that will be used to 
construct quantum states for the electromagnetic field. 
 
 
3.10.1 Momentum wave-packets: Uncertainty relationships 
 
Quantum states embody the interactions required to produce them. Let us make 
clearer this point by examining linear superpositions of planar waves. 
 Translation symmetry is used to generate base states in position reciprocal 
space coordinate (Cf.Sect. 3.2.4). The range accorded to configuration space 
coordinates goes from -∞ to +∞; in reciprocal space k-coordinates have also the 
range: ]-∞,+∞[. The transformation function exp(ik.q) forms a complete basis set 
serving to express a given quantum state with amplitudes φ(k) in k-space to the 
same quantum state but in q-space: 

  φ(q) =1/√2π

! 

dk

"#

+#

$  exp(ik.q) φ(k) (3.10.1.1) 

 
The eq.(3.10.1.1) reads as a quantum state that is projected onto k-configuration 
space is determined by the amplitudes φ(k); this is an input derived from 
experimental data or representing a particular model situation (see below) and the 
configuration space representation is then φ(q). Of course one might have gotten 
the quantum state projected in configuration space with the set of amplitudes φ(q) 
and the relation in k-space reads as: 

  φ(k) =1/√2π !
+"

"#

dq  exp(-ik.q) φ(q) (3.10.1.2) 

 
Here the wave packet φ(q) is the input so that in k-space is given by φ(k). The 
mathematical forms are different, albeit they represent the same abstract quantum 
state, different symbols are commonly used to identify them; here, maintain the 
same symbol (label). 
 For a time dependent quantum state |φ,t> with data obtained from 
projection in k-space one gets the quantum state in configuration space: 
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  φ(q,t) =1/√2π

! 

dk

"#

+#

$  exp(i(k.q-ωt) φ(k) (3.10.1.3) 

 
In the case that k and ω were independent, the separation leading to φ(q,t) 
starting from a quantum state prepared in k-space would just be an apparent time 
evolution: the wave packet would come back to φ(q,t=0) and start up again a new 
cycle; the amplitudes in absolute value are invariant. 
 For a Gaussian quantum state, e.g. φG(q) = (2/π α2)3/4 exp(-q2/ α2) as 
well as φG(k) (Cf. Sect. 3.2.4) the widths at half-maximum, Δq and Δk, are 
controlled by the parameter α, they are roughly inverse to each other so that: 
 
  Δq Δk ≈ 1  (3.10.1.4) 
 
The numbers Δq and Δk refer to a property of the quantum state φG(q) or to φG(k) 
and consequently they embody experimental data. The nature of numbers q and k 
differ from Δq and Δk; the former belongs to a continuum while the latter 
correspond to special quantities (i.e. they enter a non-standard analysis where one 
can find as example the infinitesimals). 
 This distinction is important to bear in mind. It is at this level that physical 
situation enters. To talk of particular Δq and Δk one must know that a particular 
quantum state is involved; in turn, this implies experimental conditions under 
which the quantum states, not the bases functions, are determined. 
 It is a common practice to multiply k by Planck’s constant and using the 
prescription p=hk one get an expression like: 
 
  Δq Δp ≈ h  (3.10.1.5) 
 
The widths are associated to a preparation of the quantum state and have nothing 
to do with measurements of any kind. For this reason the name Heisenberg 
uncertainty relationship is not used here. See Chapter 11 where this and other 
issues concerning quantum measurement theory are discussed in more detail. 
 Now the transformation function exp(i(k.q-ωt) can be used in the frequency-
time regime. What is the meaning of exp(iωt)→ <ω|t>? No one, except that we 
are using frequency and time labels. Assume one can construct a pulse given by 
the amplitudes φ(ω) of a linear superposition the corresponding representation in 
time-space is: 

  φ(t) =1/√2π

! 

d"

#$

+$

%  exp(-iωt) φ(ω) (3.10.1.6) 
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Negative and positive frequency labels is one way to signal direction; energy 
emitted or energy absorbed would be a classical picture but the real numbers used 
as labels are not relayed to experimental conditions, they provide appropriate 
mathematical spaces. But the wave packet (quantum state) will show the 
relationship 
  Δω Δt ≈ 1  (3.10.1.7) 
 
The width of the pulse is Δt and by multiplying both sides with Planck’s constant 
one obtain 
  hΔω Δt ≈ h  (3.10.1.8) 
 
Taking hΔω as the amount of energy embodied in the pulse around frequency ω, 
namely ΔΕω, we get a form of the energy-time relationships that relate to 
experimental situations:  
  ΔΕωΔt ≈ h   (3.10.1.9) 
 
Thus, we have a superposition of a bunch of frequencies represented by the 
function φ(ω) in such a way that the pulse width must satisfy eq.(3.10.1.9). This 
would correspond to a polychromatic EM field. The information is encoded in the 
amplitudes defining the quantum state. Thus, if you had prepared a "wave packet" 
φ(ω)=δ(ω−ω’) the time dependent quantum state would be the fixed amplitude 
exp(-iω’t), namely a monochromatic state. 
 
 
3.10.2 Basis sets for EM radiation 
 
What can be a quantum state of the electromagnetic radiation? To this question 
we dedicate this section. A more detailed presentation is given in Chapter 6. 
 First, let us evoke some key questions concerning quantum mechanics itself. 
By now you understand that this is not a scheme designed to describe particles. 
The quantum states such materials systems may be put in is quite a different 
story. Thus, the material system over which one is to construct representations of 
its quantum states are sets of energy quanta an EM field may exchange with 
massive material systems. You cannot target the photons as particles but you are 
better off in trying to get the quantum state for such systems. 
 Let us insist: one should not speak of particles in a radiation field nor for the 
quantum mechanical description of material systems. Of course, one may use 
concepts such as particle-state to help the set up of particular algorithms. In the 
present view of quantum mechanics there would never be a “collapse of the wave 
function”. Material systems do not occupy a given eigenstate when it is being 
measured. 
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 Experimentally, we know that in real (laboratory) space energy is exchanged 
between a EM field and a massive material system and that this occurs in energy 
packets; we call such packets entering the exchange as photons. The question is 
how to construct a Hilbert-space-like to write down the quantum states. 
 An answer to the question above is to find out labels for the basis vectors 
related to photons fields not to particles. A photon filed is a quantum construct; 
this is all we need to know for the time being. 
 An energy quantum is characterized by a frequency: ω or ν. The former is a 
circular frequency (radians per second) the latter has dimension of inverse of 
time. Select a monochromatic situation. The number of energy quanta it can 
exchange under determined experimental conditions may characterize the photon 
field and we use it as a label. One gets: 
 
  {|0>, |1>,…, |n-1>, |n>, |n+1>,…} (3.10.2.1) 
 
This is a complete orthonormal set with <i|j> =δij where the labels may be put in 
connection with an amount of energy as shown below.  
 So far we have forgotten to indicate which frequency it is. Let this one be ki so 
that we imply that we may have in real life a photon field whose energy count for 
nki photons, then you relate the labels to the energy with either of the extremes 
appearing below: 
  nkihν = nki (h/2π) (2πν) =  nki hω   (3.10.2.2) 
 
Remember, ω λ = c is a fundamental relationship derived from classical 
electrodynamics so that the energy can be label with kω hc = hω. Thus we 
understand that |k| labels an energy as well. In what follows the label nki is used 
with the purpose of identifying the frequency implied and to a number of energy 
quanta (see below). There, we will show that energy-label difference is what 
matter.  
 When using label k one can also refer to as a k-mode. Look now. We have an 
eigenvector say |nk> and the energy label hνk and we define the Hamiltonian 
operator for the k-mode by the following relationship: 
  

! 

ˆ 
H k |nk> = hνk (nk + 1/2) |nk> = Enk|nk> (3.10.2.3) 

 
The label nk =0 defines the vacuum, i.e. no energy will be available for exchange. 
For the k-mode we can construct a quantum state as a linear superposition: 
  |Ψ> =  Σ(nk) |nk> <nk|Ψ> = Σ(nk) |nk> Cnk(Ψ) (3.10.2.4) 
The average energy of the EM field if you can prepare in the linear superposition 
above is given by: 
   <Ψ| 

! 

ˆ 
H k |Ψ> = Σ(nk) Cnk*(Ψ) Cnk(Ψ) Enk  (3.10.2.5) 
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The zero-point energy counts by one for normalized quantum states:  
 
  <Ψ| 

! 

ˆ 
H k |Ψ> =½ hνk + hνk Σ(nk) |Cnk(Ψ)|2 nk (3.10.2.6) 

 
This is the average energy associated to the quantum state given by eq. (3.10.2.4). 
Only amplitudes different from zero contribute to this energy. 
 It is interesting to see that  |Cnk(Ψ)|2 for particular quantum states may be 
prepared so that a distribution around sets of nk’s covering a finite range; beyond 
such range the amplitudes are to be taken as zero, this would be a model related 
to an energy packet. And, as we have emphasized over and over again, the 
preparation reflects the way real system are manipulated in a laboratory, or 
simply in the external world. 
 Now we seek a connection with the energy available in the photon-field (not 
the photon number!) let us examine the energy ladder. For nk=0 the energy level 
is just (1/2) hνk which is known as the zero-point energy. Consider the the 
situation analyzed in E&E.2.1-1, namely the commutator: [

! 

ˆ 
H k, |nk> <nk’|] = (Enk 

- Enk’) |nk> <nk’|.  This operator acting on the quantum state eq.(3.10.2.4) from the 
left yields: 
  [

! 

ˆ 
H k, |nk> <nk’|]|Ψ> =   

  (Enk - Enk’) |nk> <nk’| (Σ(nk’’) Cnk’’(Ψ) |nk’’> = 
  (Enk - Enk’) Cnk’(Ψ) |nk’> =  
  (Enk - Enk’) |nk>  Cnk’(Ψ)  (3.10.2.7) 
 
The difference between labels corresponds the excitation operator |nk> <nk’| that 
indicates the energy required to shift from one state to another. Let us write ΔEn,n’ 
to represent an energy that can be directly mapped to energy in the field: 
 
  ΔEn,n’ = hνk (nk + 1/2) - hνk (nk' + 1/2) =  
   hνk (nk - nk')   (3.10.2.8) 
 
If the difference is negative, the field has to give up that energy; if it is positive, 
the field must accommodate that energy. Thus, 
  [

! 

ˆ 
H k , |nk> <nk’| ]|Ψ> = hνk (nk - nk') |nk>  Cnk’(Ψ)  

and the only matrix element different from zero will be k≠k':  
  < nk | [

! 

ˆ 
H k , |nk> <nk’| ] |Ψ> =  

   hνk (nk - nk’) Cnk’(Ψ) (3.10.2.9) 
 
In this expression the primed label plays the role of root state. For, if the quantum 
state had non-zero amplitude there then the transition operator picks up an energy 
amount hνk (nk - nk’) that can be recovered in laboratory space to the extent that 
the quantum state of the material system has been constructed this way. All base 
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state showing zero amplitude do not act as root state, i.e. they would not generate 
a spectrum. 
 The energy exchange involving the two base state levels depends on the 
quantum state. In the present case, if the amplitude for the base state | nk’> is zero, 
no energy exchange would take place. The energy difference (nk - nk’) may be 
positive or negative: the field may trap (+) or emit (-) an energy amount: a (bunch 
of) photon(s). 
 Therefore, energy available in the field can be extracted if we know the 
quantum state of the EM field. This state, for the simple 1-mode case is given by 
eq.(3.10.2.4). “Photons” are not in the base vectors! 
 Back to the basic operators: |nk> <nk’|. This operator transforms the base state  
|nk’> into  |nk> multiplied by a constant.  
 
 
3.10.3 Creation/annihilation operators 
 
The labels of the complete basis set given in eq.(3.10.2.1) corresponds to an 
ordered integers sequence. The operators |nk> <nk’| contain too much information 
if one would like to generate an ordered sequence. Thus, it would be handy to 
have a set of operators associated to such case. 
 Consider the case nk-nk’=1, one can relate the base states |nk> and |nk’+1>. By 
taking nk’= 0 the base |0> is associated to a base state for which the EM field at 
the Fence will have zero energy to be exchanged. The operator onto |nk=1> 
<nk’=0| projects the vacuum base state on to |1> that is associated to an EM 
having one quantum of energy to be exchanged. Observe that the base vectors 
would be operated in Hilbert (Fock) space where there is no such a thing as 
exchangeable energy. The mapping between abstract space and real space can be 
done, for example, with the help of the operator [

! 

ˆ 
H k, |nk> <nk’|] as shown above. 

However, it is the quantum state |Ψ> that contains the information about the 
number and types of energy quanta that would be available for a given 
experiment. Now, given a mode let construct operators that can generate the basis 
vectors for that mode. 
 Define an operator to be named as 

! 

ˆ a 
† such that 

! 

ˆ a 
†|0> = cte |1>. We can show 

that from  
  

! 

ˆ a 
†|ni> = cte | ni +1>  

  

! 

ˆ a 
†|ni> = √( ni +1) |ni +1> (3.10.3.1) 

 
The operator shifting down one unit 

! 

ˆ a  annihilates the vacuum and: 
 
  

! 

ˆ a |0> = 0 and  
  

! 

ˆ a |ni> = √(ni) |ni -1> for all ni > 0 (3.10.3.2) 
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The operator 

! 

ˆ a   can be represented as: |0><1|. It is easy to check in this 
representation that |0><1|0> =

! 

ˆ a |0> = 0 due to orthonormality: <1|0> =0. 
 The base vector |n> can be obtained as follows: 
 
  (

! 

ˆ a 
†)n /√(n!) |0> = |n>  (3.10.3.3) 

 
This is an interesting relationship. It tells us that we can shift the description of 
the EM field operator space. We have already found this type of situation: 
Schrödinger and Heisenberg representation in Hilbert space. 
 This shift is handy. It allows the introduction of electromagnetic quantities via 
operator forms. In Chapter 6 a detailed description is presented. Here, the 
operators for the electric field (

! 

ˆ 
E (r,t)), magnetic field (

! 

ˆ " (r,t)) and transverse 
vector (

! 

ˆ 
A (r,t)) are written down: 

 
 

! 

ˆ 
E (r,t) = 

! 

ˆ 
E 

+(r,t) + 

! 

ˆ 
E 

-(r,t) (3.10.3.4a) 
  

! 

ˆ 
E 

+(r,t) = Σk,λ i Eωk 

! 

ˆ " k
(λ) 

! 

ˆ a k exp(i kk ⋅ r )  (3.10.3.4b) 
  

! 

ˆ 
E 

-(r,t) =  Σk,λ -i Eωk 

! 

ˆ " k
(λ) 

! 

ˆ a k
+  exp(-i kk ⋅ r )  (3.10.3.4c) 

 
λ is a spin polarization label so that the operator  

! 

ˆ " k
(λ) senses spin state; the base 

vectors becomes a little more complex. 
 The operators 

! 

ˆ 
E (r,t)),

! 

ˆ " (r,t) and 

! 

ˆ 
A (r,t) harbor space-time coordinates and as 

a consequence they bridge the abstract to the Fence worlds. 
 
 
3.11. I-frames locations: Sources and sinks 
 
Experiments are performed at particular moments and locations; electromagnetic 
energy (photons) serves communication purposes; interaction outcomes have 
character of events.  

Events that can be recorded read and/or used to set up further experiments; all 
these elements use a space-time framework. In the space separating/relating these 
realms (Fence) the formalism is cast in terms of elements allowing for a bridge 
linking real to quantum levels. Inertial frames play such a role. For charged 
matter 

! 

ˆ 
E (r,t)),

! 

ˆ " (r,t) and 

! 

ˆ 
A (r,t) are the operators mediating interaction between 

quantum states found at each side of this Fence. The source is implicitly signaled 
by the origin of vector r the tip of which points to a real space location where a 
sink might be located, 

Two I-frames relate via a communication protocol that corresponds to Lorentz 
transformations characteristic of special relativity (J.Freund, Special Relativity 
for Beginners, 2008). The distance between two spacetime events is a 
fundamental invariant.  
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 In special relativity, the fundamental constant as already noted is the speed of 
light c. This speed is invariant to the state of uniform motion of the frame where 
the source is located.  
 A peculiarity of special relativity resides in the metric. This can be hinted at 
by comparison of distance measurements. To get a feeling for it, use two tricks:  
-i) Measure distance between points 1 and 2 with rods and threads, the squared 
distance (ΔD12)2  by Pythagoras theorem in 3-space reads: |x(1)- x(2)|2; or  
-ii) Use light signals so that measuring the space with a clock can be done, i.e. if 
the signal takes Δt seconds, the square length is (cΔt)2. 
 Let (Δs)2 be a proper length square, D12

2 be the distance measured with space 
tools and (cΔt12)2 be the same distance measured with the interval (t(1)- t(2)) 
having the precise length so that D12

2= (cΔt12)2 both must be equal so that the 
proper length is: 
  (Δs)2 = (cΔt12)2 –  
  (x1(1)- x1(2))2 -  (x2(1)- x2(2))2 - (x3(1)- x3(2))2 = 0  
 
This is a null-vector usually named light vector. The change in sign is 
characteristic of the metric associated to spacetime.  
 There are two more cases of interest with (Δs)2:  
-First, the allocated time interval (lapse) allocated to the measurement is too short 
with respect to the space interval you want to measure so that the difference 
between the time and space distance, (Δs)2 is now negative: 
 
  (cΔt12)2 - (x1(1)- x1(2))2 - (x2(1)- x2(2))2 –  
     (x3(1)- x3(2))2 = (Δs)2 < 0. 
 
The vector with coordinates (cΔt12, x1(1)- x1(2), x2(1)- x2(2), (x3(1) - x3(2)) 
fulfilling the inequality above is called space-like.  
-Second, the time allocated is larger that the one required for a signal to cover the 
space to be measured, then Δs2 >0, thereby defining a time-like vector.  
 (Δs12)2 is invariant to a change of origin and rotations in 4-space; the 
operations are known as Lorentz transformations. Taking point 1 as the origin and 
an infinitesimal sphere of radius epsilon, the limit is:  
 
  (ds)2 = (c dt)2 - dx2 = (dxo dx1 dx2 dx3) 1 0 0 0

0 !1 0 0

0 0 !1 0

0 0 0 !1

" 
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 (3.11.1) 

 
The metric matrix is said to have the signature (+ - - -) and dxo = dxo= cdt. Of 
course the opposite signature (- + + +) can be chosen, but stick to one all the time. 
The one chosen here is just conventional. 
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 The equality sign must be understood as mappings of different representations 
of the same “thing”. The speed of light permits time to be incorporated as a fourth 
space dimension. Column vectors are distinguished from row vectors by the 
location of labels as shown in eq.(2.4.2). If we want to hide the metric one takes 
as column vector: [dxo –dx1 –dx2 –dx3]; this is a four vector. The scalar product 
between the row and column four vectors for this particular case is: (dxo dx1 dx2 
dx3) [dxo –dx1 –dx2 –dx3] = (ds)2. 
 A subtle shift is accomplished if one takes the spacetime point (xo, x1, x2, x3) 
to be the distance between two events, one at the origin the other at (ct, x1, x2, x3) 
and latter on focus is put on the spacetime point as if it were a massive particle.  
 Of course one can simply define Minkowski space M M to be a four dimensional 
vector space over the real number field with a flat Lorentzian metric ηab =diag(1,-
1-1,-1) where the bold sub index range over 0,1,2,3. At each point on RR4 there 
exists a set of basis vectors eo , e1, e2, e3 belonging to MM  (a tetrad) such that any 
vector AA  ∈ M M  by 
  AA  = Aoeo + A1e1+ A2e2+ A3e3 = Aa ea   (3.11.2) 
 
It follows from eq.(3.2) that the basis vectors fulfill the orthonormalization 
condition ea

. eb equals to ηab. 
 
 Reciprocal space and time corresponds to the mappings: length→1/length =(k) 
or wave number; time → 1/time, or frequency (ω=ν/2π). These magnitudes form 
a 4-vector: (ω, kc) = (ω, k1c, k2c, k3c). The speed of light permits changing wave 
number dimension into frequency as shown. Thus, the wave number defines 
spatial intervals while frequency defines time intervals. Observe that these 
quantities do not define intervals in time and in space because there is nothing 
like an absolute space and time. 
 The norm of a four-vector is invariant to the so-called Lorentz transformations 
(LTs). In fact, a LT is defined as a change of coordinates relating two I-frames 
that leave the norm of a four-vector invariant. In reciprocal representation the 
norm of (ω, kc) reads: 
   ω2  - k1k1 c2  - k2k2 c2  - k3k3c2 =  
  ω2  - (k1c)2  -  (k2c)2  -  (k3c)2 = constant  (3.11.3) 
 
The change is possible because ki = ki, for i=1,2,3. The speed of light because it is 
taken to be independent of an I-frame state of (uniform) motion allows dimension 
change so that kc has frequency dimension.  
 Now let us use Planck’s constant h and select momentum by distance 
dimensions. Thus, hk is a vector with momentum dimension denoted by p. 
Assign the components of this vector to the space part of a four-vector (p0 p1 p2 
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p3) → P and search after the time-like component po. To see a connection 
consider the four-vector (ω, kc) h  = (hω,hk1c, hk2c, hk3c) where the time 
component relates to the energy hω = E. Thus, divide this equality by the speed 
of light to get: (ω, kc) h /c = (E/c, hk1/c, hk2/c, hk3/c) = (p0  p1/c  p2/c  p3/c) and 
the covariant column 4-vector: [po (–p1/c)  (–p2/c)  (–p3/c)], the scalar product 
defines a relativistic invariant (to Lorentz transformations): 
  (P)2 = ( E/c)2 – (p1)2 –(p2)2 –(p3)2 = constant (3.11.4) 
In the rest frame the linear momentum is the zero vector and (E/c) should 
correspond to the rest mass momentum Moc. Thus ( E/c)2= (Moc)2 and E=+(Moc2) 
so that one can write: 
  (E)2 – {(p1)2 +(p2)2 +(p3)2 }c2 = (Moc2)2  (3.11.5) 
 
These equations relates to the I-frame dynamics considered as a classical system. 
This part is independent from the internal quantum states sustained by the same 
material system. This independence is granted for the process of constructing 
bases sets. In real processes both levels can be made to interact. 
 At the classical world side it is customary to describe motion in terms of 
velocity (v), or speed (v= |v|) of particles (I-frames for us). Here pops up the 
subtle shift mentioned above leading from event distances to a space I-frames 
(particles) are located. Thus, at a non-relativistic limit, the mechanical momentum 
p = Mv and energy E =(1/2)Mv2. Thus, dE/dp = Mv = p. Take the differential 
coefficient from eq.(3.11.4) to get: 
 
  v = pc/E  (3.11.6) 
 
Using eq.(3.5) one gets: 
  (1-(v/c)2 ) E2 =  (Moc2)2 or   E = γ Moc2 (3.11.7) 
 
The factor gamma is given by: 
 
  γ = (1-(v/c)2 )-1/2 = (1-(β)2 )-1/2  (3.11.8) 
 
The velocity v is hence equal to βc. 
 Lorentz factor γ is then the ratio between total energy E and rest mass energy 
Moc2: 
  γ = E/ Moc2     (3.11.9) 
 
This is a key result from special relativity theory. 
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E&E.3-1. Find an expression for the momentum vector in terms of the rest mass 
momentum Moc. 
Consider the relations:1) dE/dp = Mv= p; 2) E = γ Moc2= Mc2. From 2) the total energy 
M including the kinetic energy of the frame: M=γ Mo and from 1) we deduce: p= γ Mo v. 
 

E&E.3.11-2. Use eq.(3.11.9) to discuss a situation where β=1 and the physical system 
has a finite energy E. 
To make a simple discussion we rewrite the equation as γ Moc2= E. If the system is going 
to show a finite energy E in the limit β→1 the gamma factor goes to infinity according to 
eq.(3.8). The rest mass of this system in the limit must be zero. Photons are seen this 
manner, they do not have an inertial frame associated due to their zero rest-mass they 
transport a finite amount of energy (quantum). 
  

 Before dwelling a little more in classical physics aspects observe that we have 
taken E as a label in the preceding chapters and insist on the claim that it is the 
difference between two energy levels that import an energy that can be traded 
between quantum systems and their external energy sources (EM fields for 
instance). The equation above tells us that mass can also be taken as a label that 
can be transformed into an energy label. If a quantum process involving two 
quantum states with mass labels |M1> and |M2> in the same I-frame, then if the 
difference |M1-M2| differs from zero we can safely conclude that there is an 
amount of energy that will be exchanged with an external source (system). A 
positive value corresponds to an energy release when a process shifting the 
quantum state [|M1> |M2>](1  0) into a new one [|M1> |M2>](0  1) for M1 < M2 
you will possibly have a blast! By now you can suspect there is need for a lot 
more before one get this quantum change in action. But the ground idea is there. 
 A mapping relating two frames, obtained from one another after origin 
translation and a general rotation of the space-time frame, defines the set of 
Lorentz equations. Take the 4-vector a  to represent an origin displacement and Λ  
a 4x4 rotation matrix. The Lorentz transformations L(a;Λ) leave invariant (ds)2, 
i.e. the scalar product ds•ds is the same in any rotated frame. 

Invariance of the fundamental length to translations and rotations elicits 
homogeneity and isotropy of (relative) space-time. The location of origin for the 
laboratory frame is conventional; there is no absolute coordinate representation. 

At this stage we do not need more elaborations of kinematics and dynamics. 
We already used time in a non-relativistic sense (parameter) to explore time 
displacements invariance when mapped on to Hilbert space. We got the form of a 
basic law, namely, time-dependent Schrödinger equation. Space-time coordinates 
serve label purposes in so far defining base vectors in a Hilbert space projected 
on to an inertial frame. However, because the theory is constructed upon 
invariableness or symmetries, actual coordinate values are irrelevant, only those 
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mathematical elements constructed with them that are invariant to Lorentz 
transformations are relevant.  
 Quantum states projected onto a multi-dimensional Cartesian coordinate space 
with origin coinciding with an arbitrary I-frame takes on the form of a wave 
function. This is a definition. Thus, configuration space is not related to spatiality, 
there is no location with respect to other elements such as particles or the likes. In 
clear terms, configuration space is not indicating the positions of a given number 
of particles. Here, it is an invariant mathematical space supporting any wave 
functions related to all possible abstract quantum states belonging to Hilbert 
space that we would like to project out. Furthermore, the time space used so far is 
a mathematical construct; there is no real space temporality involved, only 
sequential order. 
 One objective is to label abstract quantum states with an inertial frame. 
Therefore, no internal motion is the case and the time axis is never rotated 
towards the space axis (no boosts). This characterizes a non-relativistic limit case 
that is used through out in textbooks. The base states are label by space vector q 
with one end at the origin of the I-frame; for a one constituent the coordinate is 
given by a triad of real numbers (q1,q2,q3), the labels refer to components for three 
orthogonal unit vectors in column form: [i1, i2, i3]. As the complexity of the 
material systems increases, the dimension of the configuration space also does it. 
One thing must be clear, once the 1-system is defined, the configuration space is 
fixed and indexed by the origin of the I-frame; quantum states can change only 
and projected on the fixed configuration space generates wave functions eliciting 
changes when the quantum state does it. It is in the nature of the changes that 
time enters the picture. But changes of detectors set ups are to be monitored at 
Fences where temporality enforces physical time and spatiality enforces space as 
locations with respect to a given frame or set of frames. 
 How is it possible to detect quantum change at any arbitrary reference system? 
The answer to this question is simple: a quantum state is given by a set of 
amplitudes affecting the set of base states; they are complex numbers associated 
to the abstract quantum state. The 1-system base set must be supplemented with 
the base sets associated to asymptotic states sustained by material systems each 
one with a respective I-frame so that one always gets the same total number of 
elements (electrons and nuclei) but new I-frame labels. 
 The base sets for the multi-I-frame asymptotic systems must be included with 
the set for the 1-system (supermolecule). 
 
 
E&E.3.11-1 N-dimensional configuration space 

The dimension of a configuration space depends upon the degrees of freedom assigned to 
a given material system. For the sake of completeness let us give a short presentation of 
the Euclidean N-dimensional space or Cartesian space.  
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Definition 1: RN is a vector space of dimension N where each point x is defined by the N-
coordinates x1,x2,…,xN; 
Def.2: If x and y are two points of RN their sum x+y is the point x1+y1,x2+y2,…,xN+yN; 
Def.3:If h is any real number, hx is the point with coordinates hx1,hx2,…,hxN; 
Def.4: The statement x≥0 means that x1≥0,x2≥0,…,xN≥0; 
Def.5: x≥y means that x-y≥0; 
Def.6: |x| stands for the Euclidean norm: (x1

2+x2
2+…+xN

2)1/2; Note that |x-y| is the 
Euclidean distance between x and y. 
Def.7: The hyper volume element dx1 dx2…dxN is represented by dx in many 
circumstances; d3Nx in others. 
 
Distinguish now between internal quantum states referred to an I-frame from quantum 
states associated to the I-frame taken as a global physical system. This can be done 
because a global internal quantum state may be associated to an attractor such that for all 
practical purposes, the total mass M of the material system can be assigned to the origin 
of the I-frame. It might as well show mass moments (moments of inertia) in such a way 
that in real space one can compute classical and/or quantum properties. The coordinates 
of the laboratory frame are then referred to another frame in real space; configuration 
base states can hence be introduced with real space locating a composite particle state. At 
any rate, configuration spaces are supports for quantum states. 

Finally, to any configuration space there is a space of reciprocal (wave) vectors related 
by Fourier transformations.  
 
E&E.3.11-2 Groups 

A set of elements g= e, g1, g2,… not necessarily countable belong to a group G whenever 
there is a composition law ( ⋅ ) such that 
-1. Closure: gi∈G, gj∈G ⇒ gi⋅ gj ∈G 
This simply means that taking two elements belonging to the group G when composed 
with this law there is an element in the set, e.g., gi⋅ gj = gij  that is in the definition list; we 
name this element as gij just for the sake of notation; for specific cases one has to find out 
which element in G corresponds to this gij. 
-2. Associativity: gk⋅ (gi⋅ gj ) = (gk⋅  gi )⋅ gj 
-3. Existence of identity e∈G:  e⋅ gi  = gi⋅ e for all (∀) elements gi, e ∈ G 
-4. Existence of inverse gi

-1 ∈G:  gi
-1 ⋅  gi = gi⋅  gi

-1 = e  ∀ gi ∈ G 
-5. Commutative (abelian) groups:  gi⋅ gj = gj⋅ gi 
 
If a group consists of a finite number of elements then it is called finite group; G is called 
infinite otherwise. An example of this latter type is the rotation group L(Λ) leaving 
invariant (ds)2. 
 

 


