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4. Quantum states for simple systems  

 
  
 
 
 
 
 
 
 

Quantum states belong to Hilbert spaces that, at a Fence, are projected in 
configuration spaces sustained by I-frames. Conditions are then fulfilled to help 
introduce material systems that present themselves in real (laboratory) space. 

A sharp distinction must be made between quantum formalisms in abstract 
Hilbert space and quantum theories at Fence domains. The abstract formalism is 
projected in configuration space thereby relying on the concept of I-frames 
coming from special relativity theory; the mathematical space so introduced 
keeps an abstract nature, only frame’s origin and orientation remain in real space. 
In this manner, sets of base states, namely, {|q>} and {|k>} enter the picture. 
Quantum formalism of Chapters 2 and 3 would concern rigged Hilbert spaces 
with all its general properties as a mathematical corpus. Introduction of models 
permit quantum theories to move at an interface with real productive worlds.  

In the structure of a quantum theory, the concepts of quantum states in Hilbert 
space are transferred to quantum states projected in configuration spaces. The 
quantum state is sustained by a material system; this latter does not populate the 
basis energy levels. The connexion will be made explicit as we go along. Being a 
new foundational principle, it cannot be defined in more simple terms. We have 
to get used to it. 

It is the inertial frame that opens the first contact between abstract space and real 
space. The results are independent of the uniform state of motion of the I-frames. 
The possibility opens to introduce concepts of place and location that are not akin 
to quantum physics. To the extent one follows motion of material systems 
somehow anchored to an I-frame classical physics concepts can cautiously be 
used. The invariance of quantum states projected in configuration space sustained 
by this frame lead to base sets already discussed so far in previous chapters, e.g. 
angular momentum base sets, reciprocal (k-) space, etc.  

Quantum states are sustained by material systems, this statement will be 
slowly substantiated; to the extent the materiality is present in the laboratory 
space where the experiments are carried out there is no need to fix its exact 
location, the parameters defining materiality are data entering differential 
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equations that are used to determine appropriate basis sets. So that questions 
concerning which way a matter system has gone in an experimental setup might 
not be relevant issues in describing quantum processes. All along this book we 
will encounter particular situations that will be carefully discussed. 

Here the projected formalism is developed. Model systems introduced to get 
sets of basis states. The formalism of the density matrix is outlined. Two Fence 
models are described: harmonic oscillator and hydrogen-like atoms. 

 
 

4.1. At a Fence: time-projected quantum formalism  
  
In abstract space, Schrödinger time dependent equation follows from a unitary 
time evolution operator, 

! 

ˆ U (t,to), namely,  
 
  (i  

! 

h) ∂| Ψ,t>/∂t =

! 

ˆ 
H |Ψ,t> (4.1.1) 

 
The space representation helps constructing mappings bridging Hilbert to real 
spaces. In this sense the introduction of the I-frame is essential as shown in 
preceding chapters. Now a coordinate projected formalism is sketched.  
  
 
4.1.1. Global scheme 
 
The general structure of quantum mechanics does not require of a particle or a 
wave model; there is no interpretation required, incommensurabily between 
quantum states and materiality does not claim for an interpretation. Quantum 
physics produces its own “reality” as quantum technology shows today and will 
likely be showing in the future. 

This results in an abstract m odern quantum theory separating “kinematic” 
from “dynamic” aspects. Projecting the abstract framework in configuration 
space, that is a pure mathematic space, the time-dependent Schrödinger equation 
(4.1.1), can be cast in the form: 
 
  {(i  

! 

h) ∂<q’| Ψ,t>/∂t - <q’|

! 

ˆ 
H |q’><q’|Ψ,t>} = 0  

    (4.1.1.1) 
This equation is commensurate to abstract Schrödinger equation (1.3.1.1), this 
time expressed in configuration space. To close the loop one takes the assignment 
in the integrand of eq.(1.1.3):   
 
  <q|

! 

ˆ 
H |q> <q|Ψ,t > → 

! 

ˆ 
H (

! 

ˆ q ,t) <q|Ψ,t >. 
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This ansatz once introduced in eq.(4.1.1.1) leads to the time dependent 

equation having the form Schrödinger’s used in his seminal paper (1926): 
 

  {i  

! 

h  ∂ /∂t -

! 

ˆ 
H (

! 

ˆ q ,t)} Ψ(q,t) = 0 (4.1.1.2) 
 
The introduction of operator 

! 

ˆ 
H (

! 

ˆ q ,t) is not a logical step. It is a hypothesis that 
permits giving to Schrödinger equation, in configuration space, the same form as 
in abstract space, eq.(4.1.1). Furthermore, the explicit time dependence of this 
operator permits incorporating couplings to external sources to ensure appropriate 
time evolution at a Fence. 

We assume that the mapping 

! 

ˆ 
H →

! 

ˆ 
H (

! 

ˆ q ,t) holds true or at least the latter 
permits grabbing essential aspects of the physics for the given system. Now, from 
<q|Ψ,t > we can see that it is the time dependence of the abstract quantum state 
that which matters, the ways and means used to accomplish the task 

! 

ˆ 
H (

! 

ˆ q ,t) is 
what matters. This operator will also convey the materiality of the system. 

The family of time-independent Hamiltonians {

! 

ˆ 
H (

! 

ˆ q )} qualifying to represent 
the spectrum of a given physical system must be invariant under Lorentz 
transformations. They are called Hamiltonian operators of Schrödinger type. If 
they are to serve as generators of time translation, the self-adjoint property must 
hold. 

Whence fence model operators should satisfy specific symmetry properties. 
Classical models, when they exist, are used to construct operator Hamiltonians. In 
the preceding chapter we found the general mapping 

! 

ˆ p →(h/i)∇ and E→ (ih)∂ /∂t 
permits classical expressions to be translated into model quantum operators; they 
are dubbed quantum because h appears in the symbols definig them. In doing this, 
qualitatively, focus moves from classical trajectories into a search for quantum 
states sustained by material systems. 

For time independent Hamiltonians, the wave function separates into a space 
and a time component: Ψ(q,t ) = Φ(q) Χ(t). The separation constant E is an 
energy related to the physical situation, this defines an E-mapping. One gets a 
time independent Schrödinger equation where this time the origin of the I-frame 
is taken to be at a Fence: 

 
 

! 

ˆ 
H (

! 

ˆ q ) Φ(q) = E Φ(q) (4.1.1.3) 
 
The number E depends upon the quantum state: E= <Φ(q)|

! 

ˆ 
H (

! 

ˆ q )|Φ(q)> for wave 
functions normalized to one: <Φ(q)|Φ(q)>=1. This property implies particular 
boundary conditions. 
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 The eigen value problem is completely solvable for self-adjoint operators 
which means that there exists a complete set of denumerable (countable) 
eigenfunctions, {φk(q)}. To calculate such functions is essential to set up a base 
set serving to construct the quantum states of the system. Let us design the set of 
energy eigenvalues {Ek}, the eigenvalue equation in configuration space reads:  
 
 

! 

ˆ 
H (

! 

ˆ q )φk(q) = Ek φk(q) (4.1.1.4) 
 

The quantum state of a given system is expressed as a column vector with 
complex amplitudes in the base set arranged as a row vector: 

 
 |Ψ> → Ψ(q) = Σk φk(q) Ck(Ψ) = 
 (φk=0(q), φk=1(q),…, φk(q),…)⋅ 
  [Ck=0(Ψ),Ck=1(Ψ),…, Ck(Ψ),…]  (4.1.1.5) 
 

The basis functions are fixed so the quantum state is represented by the column 
vector: [Ck=0(Ψ), Ck=1(Ψ),…, Ck(Ψ),…]. 

These amplitudes only depend upon a given quantum state; they are 
fundamental invariants to the extent that they must be the same as those to be 
found in abstract Hilbert space. This is true for an exact scheme. 

What can be measured or recorded is expressed as a response from a given 
quantum state (linear superposition) towards external probes; response that is 
sustained by the material system at the Fence and as one gets a response detected 
at an instrument you put somewhere, the localization of the material system after 
probing is not an issue. Chapter 10 is dedicated to further analyses. 

In abstract, any base state can act as the origin of a spectral series describable 
as energy differences between an origin (the root) state and any other base state. 
In fact, only those base states having amplitudes different from zero can respond 
to external probes. This is a fundamental condition. 

For sensing in intensity regime, the square modulus of the amplitude yields a 
relative intensity: for this to be exact, the quantum state must be normalized to 
unity. In this sense, one can speak of E-observables associated to a Hamiltonian 
and complete base set {φk(q)} related to the energy spectrum (not to individual 
eigen values).  

The set of all linear superpositions on the base of energy eigen states form a 
vector space over the field of complex numbers. This means that column vectors 
with amplitudes defining a quantum state form also a linear vector space. Those 
are the physical states of the material system underlying the construction of the 
Hamiltonian. In this space a pure state is defined by a set of zero amplitudes 
everywhere except at the position assigned to the eigenvector: 

 
 k-th pure state →  [01,02,…,0k-1,1k,0k+1,…] (4.1.1.6) 
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The set of pure states is naturally ordered: 
 
[11,02,…,0k-1,0k,0k+1,…], [01,12,…,0k-1,1k,0k+1,…]… [01,02,…,0k-1,1k,0k+1,…]… 
  (4.1.1.7) 
We have to produce results using a Hilbert space where the base set is explicitly 
made with the eigenfunctions: (φk=0(q), φk=1(q),…,φk(q),…)⇔(…φk(q)…).  
The amplitudes define the quantum state: 
 
 [Ck=0(Ψ), Ck=1(Ψ),…, Ck(Ψ),…]⇔[…Ck(Ψ)…]. 
  
The quantum state (representation) is subsidiary to the base set and the scalar 
product (…φk(q)…)⋅[…Ck(Ψ)…] when given as an explicit sum makes disappear 
all zero terms giving an incomplete (truncated) picture. For the set of base states 
is not a property of the objects defining the material system but it relies on the 
fundamental constituents. QM and quantum chemistry textbooks do not address 
this issue as they have hands plenty with actual model calculations of base 
functions. 

There are two aspects, seldom identified also, concerning simple “invariance” 
of equations (4.1.1.4). The eigenvalues are ordered in a unique manner; the 
ordering does not depend on the hyper-ball around any configuration space point 
q. And, while the absolute value of these numbers can be made arbitrary, only the 
set of energy differences is a fundamental invariant. These latter are included in 
the definition of the spectra of the given system. Thus, if the I-frame has a 
uniform speed with respect to a frame where one is measuring the spectra, this 
latter will be shifted as a whole in an energy scale. 

It is a current misunderstanding to believe that microscopic objects are usually 
found in specific energy eigenstates. The argument in favor of this statement runs 
as follows: At a Fence, such state has equal energy that the one constructed with a 
direct product of 1-photon base state and the corresponding ground state. 
Moreover, an entangled state between the EM field and the material system sets 
up. This type of quantum state is examined in Chapter 6; see below Sect.4.2.3. In 
a quantum physical chemistry set up such a type of states cannot be ignored. 

Now we touch another formal point. The mapping between base function 
φk(q) and abstract base state | Ek > together with the assumption 

! 

ˆ 
H (

! 

ˆ q ) →

! 

ˆ 
H  can 

be used to write eq.(4.1.1.4) as follows: 
 

 

! 

ˆ 
H |Ek>  =  Ek |Ek> (4.1.1.8)  

 
The Hamiltonian 

! 

ˆ 
H  is hence given as: 
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! 

ˆ 
H  = Σk |Ek> Ek <Ek| (4.1.1.9) 

 
The different forms given to the Hamiltonian operator are equivalent; each one 
applies to a different representation of Hilbert space. 
 

E&E-4.1.1. Calculate (4.1.1.9) from (4.1.1.8) 
Take the eigenvalue equation and multiply both side from the right by the bra <Ek|: 
 

! 

ˆ 
H | Ek ><Ek| =  Ek  | Ek ><Ek|  

The operator is independent from the sub indexes so that we can sum over k to get: 
 Σk

! 

ˆ 
H | Ek ><Ek| = Σk Ek  | Ek ><Ek|  

But  
 Σk

! 

ˆ 
H | Ek ><Ek| = 

! 

ˆ 
H  Σk | Ek ><Ek|  

This commutation property permits writing: 
 

! 

ˆ 
H  Σk | Ek ><Ek|  = Σk Ek  | Ek ><Ek|  

And, by completeness Σk | Ek ><Ek| = 

! 

ˆ 
1 , you get eq.(4.1.1.9). 

 

E&E-4.1.1-2 Calculate the effect of | Ej><Ek| on a basis vector 
Form the object: 
 | Ej ><Ek| (|E0> | E1>…| Ek>…) 
The row vector resultant is 
 (|Ej>δk0 |Ej>δk1 …|Ej>δkk…) = |Ej> (01 02   1k 0k+1…) 
  (01 02   |Ej>1k  0k+1…) 
Take the scalar product with [Ck=0(Ψ), Ck=1(Ψ),…, Ck(Ψ),…] the result is: 
 | Ej ><Ek| (|E0> | E1>…| Ek>…) 
 ×[Ck=0(Ψ), Ck=1(Ψ),…, Ck(Ψ),…] =  |Ej> Ck(Ψ) 
Now we form 
 [<E0|  <E1|…<Ek|…]| Ej ><Ek| (|E0> | E1>…| Ek>…) 
 
This infinite matrix has zero everywhere except at the j,k position. Multiplying from the 
left with (Ck=0(Ψ), Ck=1(Ψ),…, Ck(Ψ),…)* the result of < Ψ| Ej ><Ek| Ψ> is just: 
 
 < Ψ| Ej ><Ek| Ψ> = Cj*(Ψ) Ck(Ψ) 
 
The quantum state is projected into transition amplitude. If the amplitude over these base 
states is always zero the transition amplitude would be always zero. 

We can now scrutinize the transition amplitude at two times: 
  
 < Ψ,t0| Ej ><Ek| Ψ,t> = Cj*(Ψ, t0) Ck(Ψ,t) 
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This is a correlation function sensing the effect on the amplitudes associated to the base 
states j,k. All the information lies in the amplitudes. One uses the same symbol Ψ because 
the base state is an invariant. 
 
 

Go back to the configuration space representation. It is not difficult to see that 
<q|Ek> should correspond to φk(q). The form gotten to 

! 

ˆ 
H  in eq.(4.1.1.8) is 

general. If the spectra {Ek} of this Hamiltonian were to coincide with the spectra 
of the system in abstract Hilbert space, we would have obtained a faithful 
representation via eq.(4.1.1.4). At any rate, results obtained with this theory must 
be checked against experimental results. More often than not, we determine 
energy differences between eigenvalues and intensities (emission-absorption), the 
numbers entering the characterization of a quantum state must then be related to 
such measurable properties. We seldom “observe” an energy eigen value, only 
responses are recorded and thereafter interpreted as observations or transformed 
via a measurement into data. 

The Hamiltonian operator 

! 

ˆ 
H (

! 

ˆ q ) commutes with the total spin operator 

! 

ˆ S . 
The degrees of freedom of the configuration space, q1,…,qn, are now 
supplemented with a new spin space where the total spin operator is a sum of 1-
spin operators: 
  

! 

ˆ S = Σj=1,n 

! 

ˆ S j  (4.1.1.10) 
 
For spin operators, the following eigenvalue equations hold: 
 
 

! 

ˆ S j 2 |Sj,MSj> = Sj (Sj+1) |Sj,MSj> (4.1.1.11) 
and 
  

! 

ˆ S 3j |Sj,MSj> = MSj |Sj,MSj> (4.1.1.12) 
 
For the global system, spin base states are direct products:  
 In the business of constructing base functions we will use spin independent 
Hamiltonians and, consequently, the spin functions are constructed as direct 
product of the type: 
 
 Πj  |Sj,MSj> = |S1,MS1>⊗…⊗|SnMSn> (4.1.1.13) 
 
More specific forms are given for particular cases in following Chapters. 

Remember that the I-frame might be in uniform motion seen from laboratory 
perspective. Because focus is on quantum states and the base sets relevant to their 
representation all what one calculate with the help of the configuration space is 
considered to be “internal” quantum states related to that frame; just a name, 
albeit it is unavoidable that an experimenter (or a recording device) hooked to 
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another I-frame must detect not only the “internal” response but also the relative 
frame motion. This is a key result. For what is detected between I-frames is 
electromagnetic radiation that is affected by the state of motion between sources 
and sinks. 
 

 

4.1.2. Schrödinger and Heisenberg Representations 
 
There are two formal ways to characterize time dependence named Schrödinger 
and Heisenberg representations, respectively. 
 In Schrödinger representation, time dependence is carried out by the quantum 
state: Ψ(q,t ). We have already discussed this point, now we look at time 
dependence of other quantities.  

The average value of operator 

! 

ˆ B  given by < Ψ(q,t )|

! 

ˆ B |  Ψ(q,t )>, is written in 
a way where the operator is transformed into a time dependent one: 

 
 < Ψ(q,t )|

! 

ˆ B |  Ψ(q,t )> =  
 < Ψ(q,t =to)| 

! 

ˆ U 
†(t, to 

! 

ˆ B  

! 

ˆ U (t,to)|  Ψ(q,t=to)> =  
 < Ψ(q,t =to)|

! 

ˆ B (t)|  Ψ(q,t=to)> (4.1.2.1) 
 
To better distinguish the time independent operator in Schrödinger picture a supra 
index is usually added: 

! 

ˆ B 
 =

! 

ˆ B 
(S). In Heisenberg picture, time dependent operators 

are defined as: 
 

! 

ˆ B 
(H)(t) = 

! 

ˆ B (t) = 

! 

ˆ U 
†(t, to)

! 

ˆ B 
(S)

! 

ˆ U (t,to) (4.1.2.2) 
 
 Heisenberg equation of motion can directly be obtained from the above 
equation: 

 d

! 

ˆ B 
(H) (t) /dt = ∂(

! 

ˆ U 
†(t, to)

! 

ˆ B 
(S) 

! 

ˆ U (t,to))/∂t = 
 (1/ i  

! 

h) [

! 

ˆ B 
(H)(t), 

! 

ˆ U 
†(t,to)

! 

ˆ 
H 

! 

ˆ U (t,to)] (4.1.2.3) 
 
This equation transforms into the well-known Heisenberg equation of motion: 
 
 d

! 

ˆ B 
(H) (t) /dt  =(1/ i  

! 

h) [

! 

ˆ B 
(H)(t),

! 

ˆ 
H ]  (4.1.2.4) 

 
We have to learn how to calculate commutators of a Heisenberg operator with the 
Hamiltonian to get the differential equation allowing calculation of time 
dependence. One thing is, however, clear: once 

! 

ˆ 
H  is chosen, it is the initial 

quantum state | Ψ(q, t=to)> that determines specific aspect of evolution, the final 
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result, that is the new set of amplitudes different from zero at the end of t-to stems 
from this origin. Note that comparing eqs. (4.1.2.3) and (4.1.2.4) we have 

! 

ˆ 
H = 

! 

ˆ U 
†(t,to)

! 

ˆ 
H 

! 

ˆ U (t,to)=

! 

ˆ 
H 

(H)=

! 

ˆ 
H 

(S); this means that 

! 

ˆ 
H , the Hamiltonian of the system 

in this case commutes with the time evolution operator. Of course, this is only 
natural because 

! 

ˆ U (t,to)= exp(i (t-to)

! 

ˆ 
H /  

! 

h); the Schrödinger time evolution is 
another way to put the problem. 
 

E&E-4.1.2. Calculate the time derivative of the Hamiltonian operator 

Replace 

! 

ˆ B 
(H) (t) by 

! 

ˆ 
H  in equation  ((4.1.2.4). You get d

! 

ˆ 
H  /dt  =(1/ i  

! 

h ) [

! 

ˆ 
H ,

! 

ˆ 
H ]. By 

definition of the commutation operation [

! 

ˆ 
H ,

! 

ˆ 
H ]=

! 

ˆ 0 . Thus, for any quantum state the 
result is: d

! 

ˆ 
H /dt = 

! 

ˆ 0 . The system is closed and energy is conserved. 
 
 
Equation (4.1.2.4) can formally be integrated with the initial condition: 

! 

ˆ B 
(H)(to) 

equals Schrödinger operator representation at to=0: 
 
  

! 

ˆ B 
(H) (t) =

! 

ˆ B 
(H)(t=to) + ∫ ot (dt’/ i  

! 

h) [

! 

ˆ B 
(H)(t’),

! 

ˆ 
H ] 

   (4.1.2.5) 
This equation clearly indicates that any change of a quantum state induced by a 
Heisenberg operator depend upon the commutator [

! 

ˆ B 
(H)(t’),

! 

ˆ 
H ]. Therefore, if 

such an operator commutes with the Hamiltonian at all times there will be no 
change of the initial quantum state: 

! 

ˆ B 
(H)(t)| Ψ(q, to)> = 

! 

ˆ B 
(H)(to=0)| Ψ(q,to)>. 

 The operator form of time evolution yields a theorem equivalent to theorem 
1.3.2.1. For now replacing 

! 

ˆ B 
(H)(t) by the evolution operator 

! 

ˆ U 
(H)(t) that is 

equivalent to 

! 

ˆ U (t,to=0) one gets [

! 

ˆ U 
(H)(t’),

! 

ˆ 
H ] = [

! 

ˆ U (t’,to=0),

! 

ˆ 
H ], the commutator 

equals to a zero operator. In this case we conclude that 

! 

ˆ U (t’,to=0) = 

! 

ˆ 1  at all 
times. Thus, there is no effective time evolution meaning with this statement that 
the absulute values of amplitudes do not change. 
 For the reason signaled above, the set of operators commuting with the system 
Hamiltonian are known as constant of motion. Eigenvalues afforded by such 
operators may serve to label quantum base states. 
 A general comment can be made at this point. Time evolution for a 
Hamiltonian that either provides a complete base set in the Schrödinger picture or 
commute with the operator one is seeking to follow a time evolution of in 
Heisenberg picture reduces to changes of phase. No effective physical change 
could be represented. External interactions are required to set evolution in action. 
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4.1.3. Interaction representation 
 
Factors prompting for a time evolution can be isolated and make them act on a 
quantum state. This method is known as the interaction picture. For this picture, 
the Hamiltonian is expressed as a sum of a self-adjoint Hamiltonian 

! 

ˆ 
H o and an 

interaction operator 

! 

ˆ V . The base set usually comes from 

! 

ˆ 
H o; it is an invariant 

part of the scheme, for some cases it is selected taking into account the 
simplifications it might introduce to calculate time evolution. For example, in 
Section 1.3.2 we used the notation

! 

ˆ 
H o=

! 

ˆ 
H 

’. By now we know that the 
commutator [

! 

ˆ 
H o,

! 

ˆ V ] must be different from zero operator; in other words, 

! 

ˆ V is 
non-diagonal when it is represented in the complete base provided by 

! 

ˆ 
H o. Then, 

theorem 1.3.2.1 should hold thereby leading to an effective time evolution. The 
time dependent 

! 

ˆ V -operator in the interaction picture is defined as in eq.(1.3.2.4), 
namely, 
  

! 

ˆ V 
(I)(t) = exp(i

! 

ˆ 
H ot/  

! 

h)

! 

ˆ V exp(-i

! 

ˆ 
H ot/  

! 

h) (4.1.3.1) 
 
We have not explicitly indicated time dependence for the 

! 

ˆ V -operator to alleviate 
notation. When to is different from zero, the base set for the interaction picture 
(representation) is given by: | Ψ,to;t>(I) = exp(+i

! 

ˆ 
H o(t-to) /  

! 

h)|Ψ,to;t>. This 
transformation permits extracting all relative time dependent phases:  
 
  | Ψ,to;t>(I) = Σk Ck

(I)(t) exp(+i Eok (t-to)/  

! 

h) |φk
(S)>.  

 
 The time evolution equation characterizing the state ket in the interaction 
picture is obtained after the time derivative of eq. (4.1.3.2): 
 
  i  

! 

h  ∂ | Ψ,to=0; t>(I)/∂t = 

! 

ˆ V 
(I)(t) | Ψ, to=0; t>(I) (4.1.3.2) 

 
Observe that this equation relates the quantum state |Ψ,to=0;t>(I) in a self-
consistent fashion. The quantum state is two-time mathematical object. It tells us 
that having prepared the quantum state at initial time the evolution is related to 
this origin at all times. Assuming the quantum state at time t is there then the new 
quantum state produced by the interaction starts from 

! 

ˆ V 
(I)(t) | Ψ, to=0; t>(I). Thus, 

the interaction operator controls the effective change of the quantum state. This 
differential equation can formally be integrated from the time you set up the 
experiment t=to until time t: 
 
  | Ψ, to;t>(I) = | Ψ,to;to>(I) +(1/i  

! 

h) ∫tot dt’

! 

ˆ V 
(I)(t’)| Ψ,to;t’>(I) 

   (4.1.3.3) 
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The integration being made between to and t; note that | Ψ,to;to>(I) equals to | Ψ,to> 
in the Schrödinger picture. It is then the interaction operator, which pushes the 
system to evolve in time. This result is the most important for our following the 
changes in the quantum state amplitudes. 

The interaction operator 

! 

ˆ B 
(I)(t) corresponding to Schrödinger picture operator 

! 

ˆ B , fulfils the differential equation: 
 
  d

! 

ˆ B 
(I) (t) /dt  =(1/ i  

! 

h) [

! 

ˆ B 
(I)(t),

! 

ˆ 
H o]  (4.1.3.4) 

 
In this picture, time dependent operators are driven by 

! 

ˆ 
H o while the amplitudes 

are being changed by 

! 

ˆ V 
(I)(t’). The reference state, | Ψ,to;to>(I), is the initial 

Schrödinger quantum state. This latter is the one that can be prepared in the 
laboratory or at the Fence. The base states serving to represent the linear 
superposition are those coming from Schrödinger picture:  
 
  | Ψ,to;t>(I) = exp(+i

! 

ˆ 
H o t /  

! 

h)|Ψ,to;t>.  
 
The exponential will pick out the time dependent phases for each base state that 
are solutions of: 
  

! 

ˆ 
H o(

! 

ˆ q ) φk
(S)(q) = Eok φk

(S)(q)  (4.1.3.5) 
 
The base function φk

(S)(q) is the projection in configuration space of the abstract 
base ket |k>, solution to the formal equation: 

! 

ˆ 
H o|k> = Eok|k>. 

The complete base set {|k>} is, by hypothesis, robust and it is used to 
represent a ket state in the interaction picture: 

 
  | Ψ,to;t>(I) = Σk Ck(Ψ,t) |k>  (4.1.3.6) 
 
The amplitudes are defined as usual by the mapping: Ck(Ψ,t) = <k| Ψ,to;t>(I). 
Introducing this linear superposition in eq. (4.1.3.3), after simple calculations one 
gets the differential equations for the amplitudes: 
 
  i  

! 

h  ∂ Ck(Ψ,t)/∂t = Σm <k|

! 

ˆ V 
(I)(t)|m> Cm(Ψ,t) (4.1.3.7) 

 
The matrix element <k|

! 

ˆ V 
(I)(t)|m> are transition amplitudes that can be made 

explicit because we are using the base set of eigenfunctions of 

! 

ˆ 
H o.  

From the definition given in eq.(4.1.3.1), we assume that the operator 

! 

ˆ V  can 
have its own time dependence, to get: <k| exp(i

! 

ˆ 
H ot/  

! 

h)

! 

ˆ V (t)exp(-i

! 

ˆ 
H ot/  

! 

h)|m> that 
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equals <k|

! 

ˆ V (t)|m> exp(i(Eok- Eom)t/  

! 

h). The differential equation with <k|

! 

ˆ V (t)|m> 
=Vkm(t) looks like: 
  i  

! 

h  ∂ Ck(Ψ,t)/∂t =  
   Σm Vkm(t) exp(i(Eok- Eom)t/  

! 

h) Cm(Ψ,t) (4.1.3.8) 
 
The sub index k takes on the values 1,2,…, which makes this set to take the form 
of coupled differential equations. If we keep in abstract space albeit projected Eq. 
(4.1.3.8) must be represented by a (infinite) matrix equation: 
 
  i  

! 

h  ∂t [Ck=0(Ψ,t), Ck=1(Ψ,t),… Ck(Ψ,t),…] = Σm[Vkm(t) ] 
  × [Cm=0(Ψ,t), Cm=1(Ψ,t),… Cm(Ψ,t),…]  (4.1.3.9) 
 
The symbol  [Vkm(t) ] stands for a matrix of infinite dimensions including factors 
with the exponentials; this latter equation is another way to write eq. (4.1.3.8). 
 Now, coming to the Fence, in a laboratory experiment only a few amplitudes 
defining the specific quantum state are different from zero; this is a state you can 
prepare as initial state. 
 The quantum state vector then is usually reduced to a sum of non-zero initial 
terms. This finiteness may have some catastrophic consequences if you do not 
reckon with those base states that might develop non-zero amplitude during time 
evolution at the Fence. Why the Fence and not Hilbert space? A physical time 
evolution requires energy exchanges between the source of the perturbing 
potential (operator 

! 

ˆ V (t)) and the material system associated to 

! 

ˆ 
H o even if at the 

end of interaction time there is no finite energy exchange. In a mathematical 
space you do not exchange energy as no energy conservation principle makes 
sense there. At the Fence you have to pay the bills even if barter is the call. 
 
 
4.1.4. Lippmann-Schwinger scheme 
 
We are interested to calculate the quantum state starting from space projected 
states. The wave functions are given by: 
 
 Ψ(q,t)= Ψ(q,to) – (i/  

! 

h) ∫tot dt’ ∫dq’x  
 <q|

! 

ˆ 
H |q’>exp(i

! 

ˆ 
H (q’)(t’-to)/  

! 

h) Ψ(q’,to)  (4.1.4.1) 
 
In the interaction representation one gets: 
 
  Ψ(I)(q,t) = Ψ(I)(q,to) – (i/  

! 

h)∫dq’ ∫tot dt’ 
  ×

! 

ˆ V 
(I)(q,q’;t,t’) exp(i

! 

ˆ V 
(I)(q,q’,t,t’)) Ψ(I)(q’,to) (4.1.4.2) 
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This is a generalized Lippmann-Schwinger equation relating the initial wave 
function to the wave function obtained after unitary time evolution in 
configuration space. This can be seen if one defined the operator 

! 

ˆ G (q,q’;t,to) by: 
  

! 

ˆ G (q,q’;t,to) = 

! 

ˆ V 
(I)(q,q’) exp(i

! 

ˆ V 
(I)((q,q’)(t-to)/  

! 

h) 
         (4.1.4.3) 
The propagated wave function is cast in the form familiar to the quantum 
scattering theory: 
  Ψ(I)(q,t) = Ψ(I)(q,to)– 
  (i/  

! 

h)∫dq’ ∫tot dt’ 

! 

ˆ G (q,q’;t,to) Ψ(I)(q’,to)  (4.1.4.4) 
 
The operator 

! 

ˆ G (q,q’;t,to) generates new amplitudes via the interaction operator 

! 

ˆ V 
(I)(q,q’) in eq. (4.1.4.3). 
Once the operator kernel 

! 

ˆ G (q,q’;t,to) has been calculated or somehow 
modeled the integral equation opens a way to obtain the resultant wave function 
value in a neighborhood of the configuration space point q. 
 If everything were, as it should, the procedure outlined above permits 
constructing the portrait of the quantum state for the system of interest at time t. 
 Remember that the wave function hides the linear superposition in the fixed 
base set related to 

! 

ˆ 
H o that may be more relevant to the process discussion. 

 
 
4.1.5. Born and higher approximations 
 
Let us underline the importance of amplitudes and their time evolution equations. 
The set {Cm(Ψ,to)} is fixed after a specific preparation that in general produces a 
bunch of zeroes and a few non-zero amplitudes. In order to take advantage of the 
differential equation (4.1.3.8) we must integrate it as follows: 
 
  Ck(Ψ,t) = Ck(Ψ,to) - (i/  

! 

h) ∫ tot dt’  
  Σm Vkm(t’) exp(i(Eok- Eom)t’/  

! 

h) Cm(Ψ,t’) (4.1.5.1) 
 
Iterating this equation once we get Born’s approximation by stopping the series at 
terms linear in V: 
  Ck(Ψ,t) = Ck(Ψ,to) - (i/  

! 

h)∫ tot dt’  
  Σm Vkm(t’) exp(i(Eok- Eom)t’/  

! 

h) Cm(Ψ,to)  (4.1.5.2) 
 
One more step in the iteration of eq. (4.1.5.1) and simplifying the energy sub 
index leads to: 
  Ck(Ψ,t) = Ck(Ψ,to) - (i/  

! 

h)∫ tot dt’ x 
   Σm Vkm(t’) exp(i(Ek- Em)t’/  

! 

h) Cm(Ψ,to) + 
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 (i/  

! 

h)2∫totdt’∫tot’dt’ΣmΣm’Vkm’(t’)Vm’m(t’’) 
 × exp(i(Ek-Em’)t’/  

! 

h) exp(i(Em’-Em)t’’/  

! 

h) Cm(Ψ,to)+…  
      O(V3)  (4.1.5.3) 
 

Time evolution for these latter two cases always start from the initial state given 
by the set {Cm(Ψ,to)}. The operator 

! 

ˆ V  via its matrix elements Vkm opens channels 
that might initially show zero amplitude. 
 In amplitude space we can see that only those base states having non-zero 
initial amplitude generate time evolution leading to non-zero amplitudes; we have 
arranged the dummy indexes so that the initial amplitudes are designated by 
Cm(Ψ,to). Let us state it again, in Born approximation for base states that had zero 
amplitude at the beginning of the experiment it may be possible to find non-zero 
amplitude at a later time provided the transition amplitude, say, Vkm(t’) relating 
initial state Cm(Ψ,to)≠0 to a final state Ck(Ψ,t)≠0 in spite of Ck(Ψ,to)=0. 
 It is worth emphasizing that the set of transition amplitudes {Vkm(t’)} is a 
fixed property of the systems. The only thing that can change is the quantum 
state, namely, the amplitudes. 
 Factors contributing to time evolution for given amplitude relate to three 
different sources. First to the intrinsic coupling between the system of interest 
and the probe used. This is represented by Vkm(t). The second is the spectra of the 
system being probed. This is reflected in the exponentials exp(i(Eok-Eom)t/  

! 

h). The 
third signals the manner used to prepare the system via the selection of the initial 
quantum state: the set {Cm(Ψ,t=to)}. At a Fence, the system can be controlled via 
Vkm(t) that may contain the excitation frequency used to set the system in 
evolution. 

From the physical point of view in order to produce a change of quantum 
state you have to ensure interaction of the initial state with 

! 

ˆ V ; this is the key 
lesson to retain when laboratory setups are to be examined. As soon as the 
interaction becomes effective the new quantum state becomes a new linear 
superposition. How many new channels, or amplitudes that initially were zero, 
show non-zero amplitudes after interactions depend upon the matrix elements 
(Vkm) involved. If this one is zero, second order effects may open the channel: 
Vkn × Vnm as one sum up over the complete spectrum will certainly pick up 
“intensity” as spectroscopists use to say. Remember the discussion of chemical 
processes in the first chapter. 
 
 
4.2. Model systems of broader interest 
 
Many I-frame systems show relative kinetic energy and diverse internal quantum 
states. Improved control of these degrees of freedom of ultracold neutral and ions 
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is an active field of research. Three cases are discussed here: 1) Systems of single 
or several trapped neutral atoms (molecules); 2) Systems of single and/or few 
trapped ions; 3) A trapped single ion in a Bose-Einstein condensate (Zipkes et al. 
Nature, 464 (2010) 388-391). Of special interest to us is a group corresponding to 
chemically reactants elements in gas phase that are related to a supermolecule (1-
system). 

Ashkin’s book on Optical Trapping and Manipulations of Neutral Particles 
Using Lasers presents exhaustive analyses and relevants reprints. The reader has 
there an invaluable source. Duplicate this work is beyond the possibilities of the 
present writer. We focus on basic materials that might help those non-specialists 
to be able reading specialized work. 

Multipartite systems whose total matter content corresponds to a 1-system are 
of broad interest; bi- and ter-molecuar chemical reactions are conspicuous 
examples. Each element of the multipartite (cluster) is independently referred to 
an I-frame because one can prepare them independently at a laboratory facility. 
The relative velocity, position and orientation are well-defined concepts in 
Special Relativity context. A one I-frame system is not commensurate to the 
many I-frame systems included the multipartite case; this is a problem requiring 
careful attention.  

First we revisit the states of a material system in a box followed by a specific 
analysis of a two-state quantum system. 
 
 
4.2.1. Particle-states and I-frames system in a box 
 
Box particle-states are quantum mechanical concepts. Particles in a box for us 
correspond to collections of I-frame systems in confined 3-space.   
 In the laboratory, both concepts are required to describe the phenomenology. 
An I-frame system can be prepared locally. Assign to it a particular velocity v so 
that the classical state of motion is Mv=P. To simplify the analysis, let us take the 
direction of v along the x-axis and ask for a quantum correlate. To fulfill this end 
let us study a 1-dimensional quantum system. 

The base states are arranged in the row vector (exp(ikxx)  exp(-ikxx)) and an 
arbitrary quantum state is the linear superposition:  

 
   (exp(ikxx)  exp(-ikxx))⋅[ A  B ]. 
  

This represents the quantum state: 
 
   ΨA,B(x) = A exp(ikxx) + B exp(-ikxx);   
    |A|2 + |B|2 =1 (4.2.11) 
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It is the set of complex numbers (A,B) that define the quantum state if the base 
vectors are kept fix. 

The base state exp(ikxx) stands for a plane wave displacing from left to right 
(from negative towards positive x-values). The base state exp(-ikxx) is said to 
stand for a plane wave along the x-axis moving from positive towards negative 
values of the coordinate x. 

What characterizes the base function is kx. This number is invariant so that 
one will determine the same plane wave state whatever the value of the 
coordinate x. Displace the origin of the I-frame along axis y or z, the quantum 
state is always the same for this particular case. One can fix a (y,z)-plane and 
according to the preceding analysis the quantum state Aexp(ikxx) is the same over 
the whole surface perpendicual to the displacement direction of the plane wave. 
 Equation (4.6.3) is the generic solution to the quantum problem. In fact, it 
contains the solution to all possible problems you can imagine in this context. For 
each one of them, we have to fix the values of A and B that must fulfill the 
normalization condition. 
 Now, we have to ask for the problem we want to be solved. This belongs to 
laboratory level (Fence). We have no problems with quantum physics in real 
space.  

 At the Fence you master the I-frame system. It can be found or put anywhere. 
Is up to you. No quantum mechanics involved yet. Consider some examples to 
train our language skill. 

 
 -A: Prepare an I-frame system at point x=-xo, velocity vx, momentum M vx at 
time to.  
 i) What is the quantum state before time to? Answer: [A  B] = [0  0]. You 
have no quantum state before preparation. Of course the base set is still there! 
 ii) What is the quantum state after time to? Answer: [A  B] = [1  0]. You 
just prepared it. 
 
 -B: Prepare the I-frame system at point x=+xo with velocity -vx and 
momentum -Mvx at time to.  
 i) What is the quantum state before time to? Answer: [A  B] = [0  0]. You 
have no quantum state before preparation. Albeit you still have the base set. 
Actually, we can call the quantum state [0  0] as the vacuum for this special 
system.  
 ii) What is the quantum state right before time t’ required for the I-frame to 
rebound at a wall located at x=-xo? Answer: [A  B] = [0  1]. 

 iii) What is the state after rebound? Answer: [A  B] = [1  0]. 
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 -C: Take the system prepared as in 1) but now put a wall perpendicular to the 
x-axis at the origin (x=0). Thus, if we launch the I-frame system from the left it 
cannot be detected beyond the wall (to the right of it). Moreover, consider the 
plan perpendiculat to the x-axis and give a thought to the following statement: 
any neighborhood on the 2-D surface can be a possible place where the I-frame 
system may go through. When we say that the wave function is identical on any 
neighborhood of equal size on the 2-D surface the statement closes the quantum 
state description. This is a plane wave state. 

The wall introduces a way to distinguish left from right. The base states are 
the same. But now we have to distinguish a quantum state to the left from another 
to the right. The amplitudes at the right are designated as (F, G):  

 
   Ψ(F,G )(x) = F exp(ikxx) + G exp(-ikxx);   
   |F|2 + |G|2 =1for x>0  (4.2.12) 
 
Equation (4.2.11) is valid for x≤0 only. 
 The anisotropy induced by the wall does not affect the base set but only the 
quantum state. Observe that we are taking the system as a whole and the external 
constraints as generating possible different quantum states. 
 -i) What is the quantum state before the I-frame system comes to the 
origin? What do we have here is a classical system moving as the case 1)-i) and 
the quantum state should look as (1  0). 
 -ii) What is the quantum state when the I-frame system comes to the 
origin? The classical I-frame system rebounds at the wall leading to a momentum 
inversion. While the quantum system ought to suffer a transition from (1  0) to 
state (0  1). Here we have not specified location on a 2-D surface because this 
cannot be done. 
 

The classical rebounding at the wall translates in Hilbert space as a transition 
changing the quantum state. The wall must be non-transparent. 

In everyday world a rebound can be taken as an event, a change of the classic 
state of motion. In Hilbert space the event will be represented by a change of 
quantum state. It is no more complicated than this. 
  
 -D: Let us construct a box by putting walls at +xo and -xo. Do the same along 
other directions. Here we analyze the 1-D case. The base functions are the same 
as above. Now we have boundary conditions at walls positions: 
 

 Ψ(A,B)(x=+xo) = A exp(ikxxo) + B exp(-ikxxo) =  
  0- 0i (4.2.13a) 
 Ψ(A,B )(x=-xo) = A exp(-ikxxo) + B exp(ikxxo) =  
  0+0i (4.2.13b) 
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The base function exp(ikxxo) = cos(kxxo) + i sin(kxxo) cannot be simultaneously 
zero, together with the fact that both Ψ(A,B )(x=-xo) and Ψ(A,B )(x=+xo) must be 
zero, the sum A(exp(ikxxo) + exp(-ikxxo)) must also be zero; the same happens to 
B((exp(ikxxo) + exp(-ikxxo)). Two solutions for this constraints are obtained by 
taking kxxo= nxπ/2 with the integer nx odd one gets cos(nxπ/2) equals to zero and 
B≠0,  or nx even and A≠0. The solutions look like: 
 
 Ψn(odd)(x) = A {exp(i nxπx/2xo) + exp(-inxπx/2xo)} → 
 A’ cos(nxπx/2xo) (4.2.1.4a) 
 
  Ψn(even)(x) = B {exp(i nxπx/2xo) - exp(-inxπx/2xo)} → 
 B’ sin(nxπx/2xo) (4.2.1.4b) 
 
The energy levels associated to these states are given by px=  

! 

hkx with kinetic 
energy: 
  E= (1/2M) px

2=(1/2M)(  

! 

hkx )2=(1/2M) (  

! 

hnxπ/2xo)2 = 
 (π2

  

! 

h
2nx

2/8Mxo
2) = Enx (4.2.1.5)  

 
The functions found in equations (4.2.4) correspond to eigen functions for this 
system. Thus, to each eigen function corresponds a quantized energy level En. 

The boundary conditions allowing for a cubic box, namely L=2xo=2yo=2zo, 
lead to a quantization of the space therein included. For a set of quantum numbers 
(nx, ny, nz) the energy level is given by: 

 
 E(nx, ny, nz) = (π2

  

! 

h
2/2ML2) (nx

2+ ny
2+ nz

2) (4.2.1.6) 
 
For a rectangular box you can see that the energy level is given by: 
 (π2

  

! 

h
2/2M)-1 E(nx, ny, nz) =  

 ((nx/Lx)2+(ny/Ly)2+ (nz/Lz)2)  (4.2.1.7) 
 
The base state associated to energy eq.(4.2.7) Ψ(nx, ny, nz) = ζ nx(x) ζ ny(y) ζnz(z). 
And the base functions read: ζ nx(x) = (1/√Lx) exp(inxπx/Lx ), etc. 
 Let us consider a cubic box, namely, Lx = Ly = Lz = L. Eq.(4.2.1.7) can be 
cast in terms of box (L) and material (M) parameters: 
  
 E(nx, ny, nz)/ (π2

  

! 

h
2/2ML2)  =  

 ((nx)2+ (ny
 )2+ (nz)2) = R2   (4.2.1.8) 

 
For large R we can treat this parameter and the energy E as continuous variables 
and restricting to positive integers, the number of states in one octant would 
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correspond to 1/8 of the volume 4πR3/3. This is taken to be the number of states 
N(E), namely, 

 N(E) = (1/8) 4πR3/3 = (1/8)(4π /3) (2ML2 E/π2
  

! 

h
2)3/2 = 

  (π/6)(8ML2E/h2)3/2 (4.2.1.9) 
 

The density of states ρ(E,δE )= N(E+δE) – N(E) gives the equation: 
 
 ρ(E,δE) = (π/4)(8ML2/  

! 

h
2)3/2 E1/2 δE =  

 (π/4) (8M/  

! 

h
2)3/2 V E1/2 δE (4.2.1.10) 

 
The density of states depends upon the volume V=L3 and a function of the mass 
M3/2 and note that Planck’s constant h appears in the denominator. One would 
then expect a pretty large number of states for example for an electron in the box. 
Observe that we are talking about base states sustained by the system. The energy 
corresponds to kinetic energy accessible to the global I-frame system. 

The materiality of the system expresses itself via the parameter M leading to 
particular densities of states. The only physical condition is that of presence 
within the volume V. It is irrelevant to localize the material system at any place in 
this volume. If there is no material system in V the formulae above are irrelevant. 
 The I-frame system in a cubic (rectangular) box shows a quantization of the k-
vector induced by the confinement. The quality of Hilbert space would then 
depend upon external parameters for confined systems. This is an important result 
for Fence systems. This opens the possibility for control of such systems. 
 More detailed analyses will be taken up in the following to relate these 
situations with the general (Fourier) continuum basis set employed in Sect.(3.2). 
 The analyses presented above implicitly assume a kind of particle model. The 
reason explaining the model is due to the total oversight of an attempt at 
constructing a representation of quantum states. The standard method used is 
adapted to statistical aspects of I-frame collections. Now, let us turn to study 
quantum states for one I-frame system trapped in a cubic box of length L. 

One I-frame system containing a mass M associates to the energy levels: Enx = 
(π2

  

! 

h
2nx

2/8ML2). The set {Ψ(nx, ny, nz)} or more simple { ζn1(x1) ζn2 (x2) ζn3(x3)} 
are base states. A generic quantum state along direction x1 looks like: 

 
 ΨA,B(x1) = A exp(ik1x1) + B exp(-ik1x1) (4.2.1.11) 
 
Information carried out by an I-frame in so far mass and angular momentum 

are concerned has a bearing on a classical world description. However, focus on 
quantum aspects shift the description towards quantum states and associated basis 
states. The eigen values of the material system in a box incorporate input on box-
length (L) and mass (M).  The magnitude (  

! 

h /2M)k2 corresponds to kinetic energy 
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and   

! 

hk stands for linear momentum. This information is included in exp(ik1x1) 
that is a basis function. 

The quantum number k1 is at disposal to simulate situations at the Fence. The 
statement: a quantum state is sustained by a material system, means that we loose 
detailed contact with the materiality in the sense used in classical dynamics. Of 
course, if no material system is left or trapped in the box then there is way to 
introduce the quantized magnitudes. In the quantum world what counts are the 
ways one can prepare and modify quantum states. 

At the Fence, besides box states there are internal quantum states. Yes, even a 
proton displays a quantum mechanical structure. But this issue is left out as it is 
now. 

 
 

4.2.2. Several I-frame systems 
  
Consider now the material system constituted for example by 2 independent 
hydrogen atoms and consequently from the perspective of a classical world there 
are two I-frames.  

  In the preparation phase it is useful to use classical mechanics quantities but 
once we come to examine quantum mechanical behavior obviously leave outside 
classical physics descriptive elements. Once the material systems are trapped at 
cold and ultracold conditions the quantum physics description is the only one 
adequate. 

Hydrogen atoms are composite bosons. The total spin angular momentum, 
J=I+S, can be zero or one. There then 4 internal spin base states for each H-atom. 
Base functions in projected quantum states are label with energy eigenvalues. 

An arbitrary base function would look like Φ(n1,n’1)( x11, x12); label permutation 
leads to Φ(n’1,n1)(x11,x12) that is identical to the non-permuted one. The case where 
both labels are identical reads: Φ(n’1,n’1)( x11, x12). 

A base function of lowest energy is given by: Φ(01,01)( x11, x12). Thus, for n-
bosons the base state of lowest energy reads: Φ(01,…,01)( x11,…,x1n). This is a pure 
quantum state. 

The process leading from an n-aggregate to (n+1)-aggregate is called a Bose-
Einstein condensation (BEC):  

 
 Φ(01,…,01)(x11,…,x1n)Φ(01)(x1(n+1))→

 Φ(01,…,01,01)( x11,…,x1n,x1(n+1))  (4.2.1) 
 
It is a sepwise passage from simple product base function to a non-separable 

base function. The stepwise change can be described with a quantum state: 
 
  Ψ( x11,…,x1n,x1(n+1)) = 
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 Cn Φ(01,…,01)(x11,…,x1n)Φ(01)(x1(n+1)) +  
 Cn+1 Φ(01,…,01,01)( x11,…,x1n,x1(n+1)) (4.2.2) 
 
Because the base functions given in (4.2.1) belong to Hilbert space one can 

construct a meaningful linear superposition eq.(4.2.2). We can move backwards 
to find out the direct product Φ(01)(x11) Φ(01)(x12)… Φ(01)(x1n) Φ(01)(x1(n+1)). This 
base state stands for the unentangled set sustained by n+1 material systems. We 
write the linear superposition as follows: 

 
  Ψ( x11,…,x1n,x1(n+1)) = 
 C1  Φ(01)(x11) Φ(01)(x12)… Φ(01)(x1n) Φ(01)(x1(n+1)) + 
 C2  Φ(01,01)(x11, x12)… Φ(01)(x1n) Φ(01)(x1(n+1)) +…+ 
 Cn  Φ(01,…,01)(x11,…,x1n)Φ(01)(x1(n+1)) +  
 Cn+1 Φ(01,…,01,01)( x11,…,x1n,x1(n+1))  (4.2.3) 
 
The column vector (C1, C2,…, Cn, Cn+1)t characterizes a quantum state in the 

progressive basis set starting with no-entanglement ending at full one.  
The quantum state (1,0,…,0,0)t stands for an aggregate of bosons totally un-

correlated. The quantum state (0,0,…,0,1)t stands for a fully entangled material 
system made of n+1 bosons. This state represents a BEC. 

As you might have already noticed, the configuration space is referred to one 
I-frame only. The material system must certainly be there inside the trapp volume 
but besides this datum the quantum physical description is not concerned with the 
“particles”. This point is worth emphasizing. We leave now this aspect and move 
on to examine specific model systems. 
 
 
4.2.3. Two-state model 
 
Consider a system with two base states, |a> and |b>, fulfilling the eigenvalue 
equations related to (4.1.1.9) for which |E1>=|a> and |E2>= |b> so that the 
Hamiltonian is: 
  

! 

ˆ 
H  = |E1> E1 <E1| + |E2> E2 <E2| (4.2.3.1) 

 
The total energy E = E1+E2 is a conserved quantity as well as the energy 
difference hΔ= E1-E2. In terms of these new parameters one can write:  
 
  E+ = (E1+ E2)/2 and E- = (E1-E2)/2 = hΔ/2.  
 
Take Δ in frequency units and Planck constant as energy by time. 
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To reduce the two-state problem to a generic case, namely, one defined in 
terms of E+ playing the role of energy origin and Δ, the old in terms of new labels 
and h=1 read:  

  E1= E++ Δ/2 and E2= E+- Δ/2. 
 
Take now as energy origin E+ and the new base state labels read: | −Δ/2> and 

| +Δ/2>. Thus, there are to base states |+> and |-> whenever we use the relative 
energy variables. A generic quantum state |Ψ> is given by the linear 
superposition: 
  |Ψ> = 

! 

ˆ 1 |Ψ> = (|−Δ/2> <−Δ/2| + |+Δ/2> <+Δ/2|) |Ψ> = 
  (|−Δ/2> <−Δ/2|Ψ> + |+Δ/2> <+Δ/2|Ψ>) = 
     |−Δ/2> C-  + |+Δ/2> C+ →  
   (|->   |+>) [C- C+] (4.2.3.2) 
 
A row vector represents the base set, the quantum state (amplitudes) by a column 
vector. The amplitudes are normalized as usual: |C- |2 + |C+|2 = 1. 

Take a state prepared as follows: [C-=1   C+=0]. With the Hamiltonian (4.2.3. 
1) you can easily show that this state stay put; no time evolution. 

The model permits studying interactions with external sources that can drive 
changes of quantum states. As we already know, the external coupling operator 

! 

ˆ V 
(I)(t) must have non-zero transition matrix element: <-|

! 

ˆ V 
(I)(t)|+>. The 

Hamiltonian corresponds to an open system; the interaction source is assumed to 
provide or withdraw energy during the dynamics. Thus the model is semi-
classical to the extent an external source provides with an external potential but it 
is not included at the same level of theory. 

The Hamiltonian reads now: 
 
  

! 

ˆ H opn
 =

! 

ˆ 
H +

! 

ˆ V  =  
  {| - > (-Δ/2)< - |} + {| +> (Δ/2) < + |} + {Vm(t)|-><+| + 
    V±(t)|+><-| } = 
  Δ/2 { | +>< + | -  | - >< - | } + {Vm(t) |-><+| + 
    V±(t) |+><-| } (4.2.3.3) 
 
The operator |-><+| and its transpose complex conjugate are transition operators 
relating the two energy levels. In the context of Born scheme, eq.(4.1.5.2) 
simplifies because we take the case C+(Ψ,to)=0 and C-(Ψ,to)=1 to get: 
 
  C+(Ψ,t)= -(i)∫ tot dt’V±(t’)exp(iΔt’)C-(Ψ,to)  (4.2.3.4) 
 
There are two interesting cases sharing the form: V±(t) = V± cos(νt). 
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  Case 1: ν = 0, time independent;   (4.2.3.5a) 
  Case 2: 2 cos(νt) = exp(i νt) + exp(-i νt). (4.2.3.5b) 
 
Integration for Case 1 is simple: 
 
   C+(Ψ,t) = - (i) V±∫ tot dt’ exp(iΔ t’) =  
   -(i) V± (exp(iΔ t) - 1)/(iΔ) =  
-   -(i)V± (exp(iΔ t/2) sin(Δ t)/2)/( Δ /2) (4.2.3.6) 
- The coupling with the external source generates a time-dependent linear 
superposition. 
- The response in relative intensity from base state |+> originated by interaction 
with base state |-> is then I-→+(t-to)= |C+(Ψ,t) |2. Thus results in the standard 
formula obtains by re-introducing Planck constant explicitly in the amplitude 
only to get contact with standard notations: 
-  
  | C+(Ψ,t) |2 = (|V±|2/  

! 

h
2) sin2(t Δ)/2)/(Δ/2)2 (4.2.3.7) 

 
In order to analyze | C+(Ψ,(t) |2 we introduce some auxiliary functions. First, the 
time elapsed t-to is made equal to T and replace Δ by a variable energy E. Define 
the function gT(E): 
 
  gT(E) = T2 sin2 (T Ε/2  

! 

h)/(T E/2  

! 

h)2 (4.2.3.8) 
 
Note that when the dimension of V± is energy, | C+(Ψ,(t) |2 has dimension of 
inverse of time (T-2). For the specific case above we have E =  

! 

hΔ that can be 
taken now as a variable in (4.2.3.8). The principal characteristics of gT(E) are: i) 
at E=0 the function has a maximum; ii) the half-width is of the order 2π  

! 

h /T; iii) 
its surface (integral) is proportional to T: 
 

  

! 

dE
"#

#

$  gT(E) = 2π  

! 

hT  (4.2.3.9) 

 
The function gT(E) with energy and T fixed has nodes symmetrically distributed 
to the right and left of its maximum value at E=0 corresponding to two 
degenerate energy levels case. The amplitudes in between nodes are negligible. 
Now, for parametric values of E, gT(E) as a function of T presents three regimes. 
For low energy, the function increases with T; at intermediate energies, gT(E)  
increases, get at a maximum and thereafter decreases; finally, at higher energies, 
the function shows recurrences, namely, go to a maximum, decreases to attain a 
zero value and again increases, etc. 
 The function gT(E) can be normalized with the integral (4.2.3.9) as follows: 
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  δT(E) = gT(E) /(2π  

! 

hT) =  
  sin2 (T Ε/  

! 

h2)/(π T E2) (4.2.3.10) 
 
Taking the limit T→∞ on δT(E) one gets δ(E), Dirac’s function. 
 In this framework, the response intensity I-→+(T) is given by: 
 
  I-→+(T) = T (2π/  

! 

h)|V±|2 δT(E+-E-) (4.2.3.11) 
 
The term π  

! 

h /T has the dimension of energy; it is a bound to the energy brought 
by the external source. The energy range E-± π  

! 

h /T must include E+ in order to get 
non-zero amplitude C+(T) thereby leading to the inequality: 
 
  E-- π  

! 

h /T < E+ < E-+ π  

! 

h /T (4.2.3.12) 
 
The energy pulse from the external source must pay for energy conservation. The 
connected (initial and final) energy levels must be equal to within 2 π  

! 

h /T. 
Note that ∂I-→+(T)/∂T becomes time independent and equals to (2π/  

! 

h)|V±|2 
multiplied by the energy conserving factor δT(E+-E-). This derivative basically 
stands for the cross section for the scattering process. 
 If we had chosen the case where there is a dense set of energy levels about E+ 
in a neighborhood of E-, the inequality above holds. The half-width of the 
distribution involved in the interaction δE would approximately equal to   

! 

h /2T 
thereby leading to the relationship: 
 
  δE T ∼  

! 

h /2 (4.2.3.13) 
 
This is a typical relationship at a Fence that we have qualitatively gleaned. It 
involves an internal property (I-frame one) with an external world factor. 

Analysis of Case 2: cos(νt) = (1/2)(exp(i νt) + exp(-i νt)), leads to the result: 
 

  C+(Ψ,t) =  - (i/  

! 

h) V±∫ to
t dt’ (exp(i νt’) + exp(-i νt’)) 

  × exp(iΔ t’) = - (i/2  

! 

h) V±{exp(i (ν+Δ)t)/i(ν+Δ)  
   + exp(i (−ν+Δ)t)/i(Δ−ν)} (4.2.3.14) 
 
The frequency ν is controlled in the laboratory; it can take those values we deem 
of interest. The 2-state system has an energy gap determined by the material used 
to construct it; but once chosen it remains a datum of the problem. The 
denominators (ν+Δ) and (ν-Δ) (in frequency units) can be modulated with the 
external field so that (ν-Δ) can be made very small while (ν+Δ) would be by 
necessity much larger than the difference. It is a common model, named the 
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rotating-wave approximation, that retains the term near resonance thereby 
neglecting the (ν+Δ)-term. 
 The relative intensity at |+> in the rotating-wave approximation reads now: 
 
 |C+(Ψ,t)|2= (|V±|2/4  

! 

h
2) sin2 (Δ − ν) t)/ 2) / 

 ×{( Δ− ν)2 / 4)} (4.2.3.15) 
 
If quasi resonance conditions are fulfilled, then sin2(Δ−ν) t) /2)/{(Δ− ν)2 /4)} is a 
generalized function corresponding to Dirac function in the limit (Δ− ν) going to 
zero. 

In other words, when the external field provides enough energy, the amplitude 
at |+> becomes finite albeit time dependent. 
 It remains to dig up the structure of V±. In the dipole model, V±= -µ± |Eo| 
cos(νt). Here, µ± is the transition dipole moment between the base states; |Eo| is 
the amplitude of the electric field in the direction of the transition dipole.  

Thus, (|V±|2 /4  

! 

h
2) in eq.(4.1.6.15) becomes (|µ±Eo|2 /2  

! 

h)2. And, 
 

  |C+(Ψ,t) |2= |µ± Eo /2  

! 

h |2  
   sin2 (Δ − ν)t)/2)/{( Δ− ν)2 /4)} (4.2.3.16) 
 
This equation is valid at times not far from the initial one.  
 
  C+(Ψ,t) = - (i/2  

! 

h) V±{exp(i (ν+Δ )t)/i(ν+Δ) + 
    exp(i (−ν+Δ)t)/i(Δ−ν)} (4.2.3.17) 
 
 All elements presented here will be used later on when handling specific 
physical cases. The two-state model is pervasive. 
 However, this type of semi-classic approach misses the representation of the 
source. For some important cases the source cannot be neglected. In the following 
chapter a simple model is examined. Here we continue presenting some important 
model systems. 
 
 
4.3. Density matrix at a Fence 
 

The formalism presented in section 2.3 was just quantum mechanics in another 
guise. This is true for a 1-system. We take advantage of eq. (4.2.3.2) to give the 
form of this operator for the two-state case: 

  |Ψ> <Ψ|  = [C- C+]t {(|->   |+>) ⊗ (<-|   <+|)} [C-  C+]  
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The term in curly brackets do direct products of base vectors form a 2x2 matrix. 

   {(|->   |+>) ⊗ (<-|   <+|)} = 

! 

" " " +

+ " + +

# 

$ 
% 

& 

' 
(  

The density matrix is given by: 

   |Ψ> <Ψ|  = [C*- C*+]t 

! 

" " " +

+ " + +

# 

$ 
% 

& 

' 
(  [C- C+]  

The transition amplitude <+|Ψ> <Ψ|-> is just given by the product C+* C-. 

 Extension to an ensemble of N non-interacting copies each one in the same 
quantum state does not put a problem so long the “ideal gas” keeps it ideal. 
Because this is a model, no problems arise to speak of concentrations as we did 
for the chemical reaction model. 

 There is another way widely used in the literature. This consists of a particle 
(object) model. In this case, each member of the ensemble is assumed to be a 1-
system with only one non-zero amplitude: each 1-system appears to be in a base 
state. Let Nk be the number of elements in the ensemble that have the special 
quantum state reduced to one non-zero amplitude. In the limit N→∞ it is claimed 
that  | Ck |2 = Nk/N. The constraint being: 

 

 Σk Nk/N = 1  (4.3.1) 
 
Thus, one can speak of the probability to find one member of the ensemble in k-
th state to be |Ck|2 → Nk/N. This mapping is important. 

The passage from the coherent superposition (row vector with more that one 
amplitude different from zero) to the vector with only one component different 
from zero in a representation where one forgets the dimension of the base so that 
a simple component remains. This way of reporting a process has received the 
name of collapse of the wave function. It is certainly not a quantum process. 

At the Fence, this density matrix is useful when counting events that are 
translated to a frequency representation of probability. In this case, the definition 
is operationally modified. 

It is interesting to see that a chemist isolating the products in pure form would 
be actually executing a sort of collapse of the wave function. It is obvious that 
such process cannot be described in the framework of the present theory. Yet, 
some elements permitting a more subtle understanding are given by quantum 
mechanics at the Fence where space-time I-frames are required. 
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4.4. External potentials: Fence models 
 
A number of material systems when subjected to specific interactions with 
surrounding media may show specific quantum states. One way to construct base 
states is via external potentials that depend upon configuration space relevant to 
the given system. Once again, one should then get either algebraic or differential 
equations leading to the desired result. Here, some cases are examined. First will 
be the harmonic oscillator. 
 
 
4.4.1. Harmonic oscillator 
 
The Hamiltonian of an I-frame system having mass M at the origin in free real 
space is the kinetic energy operator:

! 

ˆ H free =

! 

ˆ K =(1/2M)

! 

ˆ P 
2. In coordinate space: 

 
 

! 

ˆ P = -i  

! 

h∇ = -i  

! 

h  (∂/∂x, ∂/∂y, ∂/∂z) and  
 

! 

ˆ K = -(  

! 

h
2/2M)∇2. (4.4.1.1) 

 
The reference system is independent from the I-frame internal configuration 
space frame. 
 The spin state of the I-frame system can also be specified. Let it be named by 
the eigen values of the operators 

! 

ˆ S 
2 and 

! 

ˆ S z, namely, |S,MS>. Spin degrees of 
freedom are at this point taken as constants including the quantum state of the 
“internal” I-frame at least in so far the search of base sets is concerned. 
 Introduce now the potential energy function V(r)= (Mω2/2)r2. The total 
Hamiltonian is given by the sum of these two terms: 
 
 

! 

ˆ H ho = 

! 

ˆ K +V(

! 

ˆ r ) = -(  

! 

h
2/2M)∇2 + V(

! 

ˆ r ) =  
 (1/2M)

! 

ˆ P 
2 + (Mω2/2) 

! 

ˆ r 
2 (4.4.1.2a) 

 
This is a model for a spherical symmetric harmonic oscillator. Observe that there 
is no particle model involved. The system is characterized besides the mass M by 
an angular frequency ω. Our task is to construct the base functions and energy 
eigen values in the configuration space where r is the vector signaling a point in 
real space. In the coordinate representation we have: 

! 

ˆ r |r>=r|r>.  
 From the general invariance properties we know that a base state cannot 
be label with position and momentum eigen values in a simultaneous fashion. The 
canonical operators do not commute: [

! 

ˆ r ,

! 

ˆ P ]= i  

! 

h . 



 QUANTUM PHYSICAL CHEMISTRY 
 
28 

 Condition the Hamiltonian by diving the expression by   

! 

hω. This is the 
energy unit related to the oscillator frequency: 

! 

ˆ H ho /  

! 

hω. 
 
 

! 

ˆ H ho /  

! 

hω = (1/2M  

! 

hω)

! 

ˆ P 
2 + (Mω/2  

! 

h)

! 

ˆ r 
2 (4.4.1.2b) 

 
The Hamiltonian is measured in units of the energy quantum   

! 

hω. Base states for 
such operator can hence be label in terms of the number of quanta, say n: |n>. We 
need a transformation of variables to get at the Hamiltonian acting on this space 
named Fock space. 
 
E&E-4.4.1-1 Construct a dimensionless Hamiltonian  
Observe that the coefficients defining the Hamiltonian contains all information there is concerning the harmonic 
oscillator; mass and frequency. The number of quanta is the degree of freedom at disposal. This is a number, no 
dimensions. So, search a dimensionless set of operators: 

 

! 

ˆ p =  (1/2M  

! 

hω)1/2

! 

ˆ P  

 

! 

ˆ Q  = (Mω/2  

! 

h )1/2 

! 

ˆ r   (4.4.1.3) 
The dimension of (1/M  

! 

hω) is a square of inverse momentum and (Mω/  

! 

h ) has dimension 
inverse square distance. Therefore, 

! 

ˆ p  and 

! 

ˆ Q  are dimensionless. The commutation 
relationship reads now: 
 [

! 

ˆ Q ,

! 

ˆ p ] = 1 (4.4.1.4) 
The dimensionless Hamiltonian reads:  
 

! 

ˆ H ho /  

! 

hω = (1/2) (

! 

ˆ p 2 + 

! 

ˆ Q 2).  (4.4.1.5) 
 
 
E&E-4.4.1-2 Construct a Fock Hamiltonian 

The operator must act on the space generated by base vectors {|n>} where n is the number 
of energy quanta. Following a pattern similar to angular momentum ladder operators 
define: 
 

! 

ˆ a  = ( 

! 

ˆ Q +i

! 

ˆ p )/√2 ; 

! 

ˆ a 
† = ( 

! 

ˆ Q -i

! 

ˆ p )/√2  (4.4.1.6) 
Use the Hamiltonian eq. (4.4.1.5)  to get with the help of eq.(4.4.1.6) the operator: 

  

! 

ˆ H ho /  

! 

hω  = (1/2) (

! 

ˆ a  

! 

ˆ a 
† +

! 

ˆ a 
† 

! 

ˆ a  ) 
Using now the commutation relations derived from eq.(4.6.1.4) and (4.6.1.6), namely, 
  [

! 

ˆ a  ,

! 

ˆ a 
† ] = 1 (4.4.1.7) 

The Hamiltonian is cast in terms of creation (

! 

ˆ a 
†) and annihilation (

! 

ˆ a ) operators: 
  

! 

ˆ H ho /  

! 

hω = 

! 

ˆ a  

! 

ˆ a 
† - 1/2 (4.4.1.8) 

 
By using commutation relationship one gets: 

  

! 

ˆ H ho /  

! 

hω =

! 

ˆ a 
† 

! 

ˆ a  + 1/2 (4.4.1.9) 
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These operators are defined in Fock space by: 
 

  

! 

ˆ a 
† |n> ∝ |n+1> and 

! 

ˆ a  |n> ∝  |n-1> 
  

The base vectors {|n>} with n=1,2,… span Fock space. The argument indicates the 
number of excitations involved in energy exchange between the electromagnetic field and 
matter. The base vector, for a given frequency is the column [|0>, |1>,….|n>,…] where 
we have added the base state for zero available excitation |0>. A process for which the 
quantum state goes from (0,…,0n-1,1n,0n+1,…) to (0,…,1n-1,0n,0n+1,…) signals the loss of 
one excitation from the EM-field; while (0,…,0n-1,1n,0n+1,…) to (0,…,0n-1,0n,1n+1,…) 
signals the emission of a photon into the EM field. See preceding chapter and Chpt.6. 
 
 
The absence of negative energy eigen values implies the lowest energy state, |0>, 
to fulfill the relation: 
 

! 

ˆ a  |0> = 0 (4.4.1.10) 
 
This condition has a fundamental meaning as the absence of negative norm base 
states: 
 <n|

! 

ˆ a 
†

! 

ˆ a  |n> = |

! 

ˆ a  |n>|2 ≥0  (4.4.1.11) 
 

The operator 

! 

ˆ a 
†

! 

ˆ a  in eq.(4.4.1.9) is named as number operator 

! 

ˆ N . The 
commutation rules are: 
  [

! 

ˆ N ,

! 

ˆ a 
†] = 

! 

ˆ a 
† ; [

! 

ˆ N ,

! 

ˆ a ] = - 

! 

ˆ a  (4.4.1.12) 
 
 
E&E-4.4. Derive the above relationships 
Let us construct the commutation relationships between 

! 

ˆ N , 

! 

ˆ a  and 

! 

ˆ a 
†. To obtain these 

relationships we need the operator identity, [

! 

ˆ X 

! 

ˆ Y ,

! 

ˆ Z ] =

! 

ˆ X [

! 

ˆ Y ,

! 

ˆ Z ] + [

! 

ˆ X ,

! 

ˆ Z ]

! 

ˆ Y . 
Use them to work the commutation relations by replacing 

! 

ˆ N =

! 

ˆ X 

! 

ˆ Y =

! 

ˆ a 
†

! 

ˆ a , 

! 

ˆ a =

! 

ˆ Y ,  

! 

ˆ a 
†=

! 

ˆ X  and 

! 

ˆ Z  can be taken to be either 

! 

ˆ a 
† or 

! 

ˆ a : 
  [

! 

ˆ N ,

! 

ˆ a 
†] =

! 

ˆ a 
†[

! 

ˆ a  ,

! 

ˆ a 
† ]  + [

! 

ˆ a 
† ,

! 

ˆ a 
† ] 

! 

ˆ a = 

! 

ˆ a 
† . 

Take 

! 

ˆ Z  equal to 

! 

ˆ a : 
   [

! 

ˆ N ,

! 

ˆ a ] = 

! 

ˆ a 
†[

! 

ˆ a  ,

! 

ˆ a  ]  +   [

! 

ˆ a 
† ,

! 

ˆ a  ] 

! 

ˆ a  = - 

! 

ˆ a  
These are the equations appearing in (4.4.1.12). 
 
 
The spectrum of the harmonic oscillator can be obtained from the above 
commutation relations. Assume that 

! 

ˆ N |n> = n |n> and <n|n>≠0. With this 
definition examine the effect of

! 

ˆ a  on a base vector |n>. Because 

! 

ˆ N  picks up the 
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number of excitations on a particular base vector we calculate 

! 

ˆ N 

! 

ˆ a |n> with the 
help of the commutator [

! 

ˆ N ,

! 

ˆ a ] =- 

! 

ˆ a : 

 

  

! 

ˆ N 

! 

ˆ a |n> =(

! 

ˆ N 

! 

ˆ a ) |n> = (

! 

ˆ a 

! 

ˆ N - 

! 

ˆ a ) |n> =  

  

! 

ˆ a 

! 

ˆ N |n> - 

! 

ˆ a  |n> = 

! 

ˆ a n|n> - 

! 

ˆ a  |n> =  

  (n-1)

! 

ˆ a |n> (4.4.1.13) 

 

Comparing the first and last terms then 

! 

ˆ a |n> = √n |n-1>. Following a similar 
pattern one gets 

  

! 

ˆ a 
† |n> = √(n+1) |n+1> (4.4.1.14) 

 

The product 

! 

ˆ a 
†

! 

ˆ a |n> = √n

! 

ˆ a 
† |n-1> =√n√(n+1-1) |n+1-1> = n |n> = 

! 

ˆ N |n> closing 
the relation between the number operator. It is not difficult to see that 
 |n> = (1/√n!) (

! 

ˆ a 
†)n |0> ; <n|n> = 1  (4.4.1.15) 

The interesting point is that the base functions can be generated with the help of 
adequate operators. Such procedures will be used several times in future 
applications. Now we go back to the real space representation. 
 The algebraic procedure permits solving an important part of the problem, 
namely, the construction of a base set, {|n>}. Projected in configuration space one 
gets <r|n> = φn(r). The time development of the Schrödinger quantum state 
|ψ(t)>: |ψ(t)>= exp(-i

! 

ˆ H hot/  

! 

h)|ψ(0)>. This can be written as: 

 

  <r|ψ(t)> =  

  ∫dr’ <r| exp(-i

! 

ˆ H hot/  

! 

h)|r’><r’|ψ(0)> (4.4.1.16) 

 

The kernel of time evolution operator <r| exp(-i

! 

ˆ H hot/  

! 

h)|r’> is fundamental. 
Compared to (4.6.3) the Green function kernel happens to be isomorphic to < r| 
exp(-i

! 

ˆ H hot/  

! 

h)|r’>. This kernel is similar to the one found in eq.(4.1.1.1). 

 One has to be very careful when coming to interpret (4.4.1.16). In the standard 
model the equation is seen as a propagation in real space of a particle represented 
by the wave function <r|ψ(t)>; starting at point r’, the propagator  

  <r|exp(-i

! 

ˆ H hot/  

! 

h)|r’>  
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would allow following the wave function as a function of time. The problem is 
that the quantum theory handle the quantum states in Hilbert space; the projected 
state <r|ψ(t)>, even if we use real space coordinates, is the range for a 
mathematical function standing for the quantum state. The only thing one is doing 
is to calculate the same wave function at different domains in configuration 
space. A change of quantum state will be achieved whenever an interaction 
operator is included in the propagator.  

 

 

4.4.2. Hydrogen-like atoms 
 
The material system associated to an I-frame separates in two parts. One is a 
source at frame origin of Coulomb field with charge Ze, the other a mass M with 
total charge Qe, the charge of one electron being –e. 

The Coulomb operator reads: V(|

! 

ˆ r |)= ZQe2 |(

! 

ˆ r )|-1. It is spherically symmetric. 
Note the case Z=1 and Q=-1 corresponds to an hydrogen-like system; if M is 
equal to the electron mass we get a model (non-relativistic) for the hydrogen 
atom. 

The kinetic energy operator 

! 

ˆ K  is given as (-  

! 

h
2/2M)

! 

ˆ p ⋅

! 

ˆ p . This operator is 
spherically symmetric as well. From (3.2.2.3) we get 

! 

ˆ p = -i  

! 

h(∂ /∂r)= -i  

! 

h  ∇  and 
the Hamiltonian operator looks like: 

 
 

! 

ˆ H  =

! 

ˆ K +V(|

! 

ˆ r |) = (-  

! 

h
2/2M) ∇2 + ZQe2 |(

! 

ˆ r )|-1 (4.4.2.1) 
 
From the theory of angular momentum reviewed in section 3.5 we can suspect 
that 

! 

ˆ H  will commute with the total orbital angular momentum 

! 

ˆ L  and one of its 
component that we select to be 

! 

ˆ L 3. We know thus  
 
 

! 

ˆ L 
2 |L,ML> =   

! 

h
2 L(L+1) |L,ML>  and 

! 

ˆ L 3 |L,ML> =  
   

! 

h  ML |L,ML> (4.4.2.2) 
 
For each L-value the system will show a 2L+1 degeneracy in such a way that ML 
ranges from –L up to +L. 

By taking a unit sphere with radius r/|r| =nr the projected base states are  
 < nr |L,ML> = YL

ML(nr) = YL
ML(θ, φ) (4.4.2.3) 

 
The spherical harmonics are represented by symbols YL

ML(θ, φ). Check section 
3.5 for further details. 
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The base functions reflect the symmetries via quantum numbers. For the 
present case, the angular part is covered by the spherical harmonics. As we saw in 
(3.5.1) for fully spherical systems, these functions can be put as products of base 
functions depending only upon one of the variables θ and φ. The point of interest 
is that the quantum number are partially coupled so that one gets: 

 
 YL

ML(θ, φ) = ΘL
ML(θ) ΦML(θ, φ) (4.4.2.4) 

 
The radial part enters in the base states via the dynamics of the system. One may 
suspect that they would have the structure like: RnLML(r) with r=|r|. The quantum 
number n relates to the energy levels of the system. The are generic solutions to 
the differential equation: 
 
 (-  

! 

h
2/2M) {(1/r)d(rd/dr)/dr+(1/r)d /dr) –  

 L(L+1)/r2} RnLML(r) + ZQe2 |(

! 

ˆ r )|-1 RnLML(r) = 
  EnLML RnLML(r)   (4.4.2.5) 
 
For the hydrogenic atoms Q=-1 and Z is the positive charge at the origin of the I-
frame.   
 
E&E-4.4.2-2 Transform eq.(4.4.2.5) to find out its solutions 
The first thing you do is to separate the differential terms with unit coefficient. Since we 
do not yet know the base functions call them by R(r) and put E instead of EnLML.  For this 
multiply the eq. by (-  

! 

h
2/2M)-1 and reorganize terms such as d(rd/dr)/dr = d2/dr2 + (2/r)d 

/dr to get: 

 

 {d2/dr2 + (2/r)d /dr }R(r) + (2M/  

! 

h
2){E+ Ze2/r –  

   

! 

h
2 L(L+1)/2Mr2 }R(r) = 0 (4.4.2.6) 

 
 
Note the difference between the two last equations. The eq.(4.4.2.5) is an eigen 
value equation that due to symmetry constraint the system must fulfill; we have to 
check this later on. Eq.(4.4.2.6) is a differential equation where the values of the 
energy are at our disposal. For negative energy, E<0 we call the possible 
solutions as bound states; these must be solutions to the eigen value equation. To 
solve this equation it is useful to have a dimension less r-variable. 

 
 
E&E-4.4.2-3 Transform eq.(4.4.2.5) to dimensionless radial variable. 
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To do this observe that the factor (2M|E|/  

! 

h
2) has the dimension of inverse square length. 

Thus, define the dimensionless variable ρ by the simple equation: 

 ρ = (8M|E|/  

! 

h
2)1/2 r (4.4.2.7) 

Doing the algebra show that the following equation obtains: 

 

 { d2/d ρ 2 + (2/ ρ)d /d ρ } R(ρ) – L(L+1)/ ρ2 R(ρ) +  

  {(Ze2/  

! 

h )(M/2|E|)1/2/ρ -1/4} R(ρ) = 0 

 

The factor {(Ze2/  

! 

h )(M/2|E|)1/2 contains the Coulomb interaction that can be recast in 
terms of a more general constant characterizing the interactions between charges and the 
electromagnetic field: α= e2/  

! 

hc, where c is the speed of light. This is known as hyperfine 
structure and it is a dimensionless number. Thus, {(Ze2/  

! 

h )(M/2|E|)1/2 = Zα (Mc2/2|E|)1/2 
and we call it with the letter λ to get the final differential equation (4.4.2.8) below. 
 
After performing the above replacements one gets:  
 
 d2R(ρ)/d ρ 2 + (2/ ρ)dR(ρ)/d ρ – L(L+1)R(ρ)/ρ2 +  
 { λ /ρ -1/4} R(ρ) = 0 (4.4.2.8) 
 
One of the approaches used to construct solutions to this equation is to look at 
asymptotic behavior, namely, for ρ→∞. In this case, terms showing ρ in the 
denominator are discarded and one gets: 
 
 d2R(ρ)/d ρ 2 - 1/4 R(ρ) = 0 
 
The asymptotic solution looks like exp(-ρ2/2). The global solution can hence be 
factored. Take then, R(ρ) = exp(-ρ2/2) X(ρ). Putting this into eq.(4.4.2.8) and 
after some algebra we get the equation in the form required to get appropriate 
solution: 
 d2X(ρ)/d ρ 2 + (1-2/ρ)dX(ρ)/d ρ {+ {(λ -1)/ρ –  
 L(L+1) /ρ2 } X(ρ) = 0  (4.4.2.9) 
 
 
E&E-4.5.2-4 Find solutions to eq.(4.4.2.9)  
A common technique to construct solutions to X(ρ) is by series expansion:  
 X(ρ) = ρL Σn=0

∞ bn ρ
n  = ρL Z(ρ) (4.4.2.10) 

By now you suspect that  ρL Z(ρ) will be plug in (4.4.2.9) to get a differential equation for 
the function Z(ρ). There from, recursion relations between the coefficients bn can be 
worked out and relationships between n,λ and L can be obtained. Remember that the 
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parameter λ contains the energy. To make the story short, for a given L the series must 
end at a specific n’ and from the relation you will derive one can write down: 
 
 λ = n’ + L +1   (4.4.2.11) 
 
Here, the principal quantum number n is introduced as: 
 
 n = n’ + L +1 
Thus, if n’≥0 then 
 i) n ≥ L+1 
 ii) n is an integer 
 
 
The relation λ = n leads to:  
 
 E =En = - {(1/2) Mc2 (Zα)2}/ n2 (4.4.2.12) 
 
This is the result obtained by N.Bohr in his famous model for the hydrogen atom. 
The key to the discussion is the emergence of quantized energy eigen values. The 
base states depend only on quantum numbers n and L. Equation (4.4.2.5) must be 
written as; 
 (-  

! 

h
2/2M){(1/r)d(rd/dr)/dr + (1/r) d /dr)– 

 L(L+1)/r2} RnL(r) + ZQe2 |(

! 

ˆ r )|-1 RnL(r) = En RnL(r) 
  (4.4.2.5b) 
 
The energy is associated to the radial part while the eigen functions collect two 
labels. The third one ML = m is not present.  

The mathematical gymnastics is essential to illustrate practical ways to 
construct base sets. This is however not the full story. While base states are the 
invariants of the problem, they do not describe physical processes involving the 
material system. Let us here elaborate this point a little further. 

What do we measure is a change of quantum state that correlates with the one 
we use to detect the change. Use the hydrogen base states (at the non-relativistic 
level) to illustrate some points. 

First. Each base state can be the root identifying a given spectral sequence. 
Balmer series corresponds to transition from or to level n=2. Two levels are 
involved (not one). The photon field relates two states differing in angular 
momentum by one unit. With the standard names, L=0→s, L=1→p, L=2→d, 
L=3→f and so on, allowed transitions related L states differing in one unit of 
angular momentum: s→p, p→s or d, etc. The change of state in the photon field 
correlates with the one corresponding to the material system. Astronomical 
spectroscopy gives us plenty of examples. Actually, visible universe is plenty of 
hydrogen atoms in diverse quantum states. In the following section a more 
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detailed discussion on these matters is presented. Here we remind that the system 
can set a spectroscopic response only if the amplitude at the root state being 
probed is different from zero.  

The quantum numbers are sufficient to identify a base state. Here, for the spin 
free case |nlm> is the base state associated to the radial quantum number n, 
orbital angular momentum l and projection along 3-direction m. The energy only 
depends upon n: En = - R/n2 with R={(1/2)Mc2(Za)2}. The base states for given l 
and m values correspond to sequences that have limit zero as n increases without 
bounds (n→∞). Reminds that 0≤ l ≤n-1. Thus 1s,2s,…, 2p,3p,…, 3d,4d,…have 
limit at same energy value, the energy difference between the lowest (1s) and the 
ns→∞ limit is the ionization energy of the system. For Z=1 the energy value can 
be obtained from (1/2)mc2(α)2 where m is the electron mass at rest. 
 The principal quantum number is related to the number of radial nodes shown 
by the base states. More exactly, this number is n-1. The ground state 1s is node 
less. The 2s has one node; 2p still has one radial node plus the nodes related to 
the L=1 state. The base functions are thence characterized by the number of 
nodes and some other properties we will discuss in due time. 
 Finally, buried in all these mathematics there is a fundamental result, namely, 
 
  L ≤ n – 1 (4.4.2.13) 
 
This means that maximum value of the orbital angular momentum is limited by 
the radial quantum number. Thus, one has a maximum magnetic level MLmax=+ (n 
– 1) and a minimum value MLmin= - (n – 1). This innocent result is most important 
for the study of Rydberg states. Keep this result in mind for the next chapter. 
 
 
4.5. Symmetry breaking interactions 
 
The strict separation introduced by an I-frame between laboratory world and the 
configuration space used to project abstract Hilbert space elements permits 
constructing base sets in a simple manner. However, once laboratory situations 
are to be handled the strict separation must be relaxed in one way or another. 

Consider the effect on an external electric field F(r1,r2,r3) acting on an 
hydrogen-like system. To extract the symmetry breaking element assume that the 
field is quasi-static, meaning by this that it is independent of local coordinates, 
i.e. it is a constant vector F. For instance, take F = |F| (n1, n2, n3) = |F| n; the unit 
vector n indicates a direction in laboratory space. The interaction operator 

! 

ˆ V  is 
given as the scalar product:  -e

! 

ˆ r ⋅F. The Hamiltonian is 

! 

ˆ H (F) = 

! 

ˆ H  + 

! 

ˆ V .  
Eq.(4.4.2.1) defines the zero order term. 
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To illustrate the quantum procedure, let us take the 2s,2p manifold (all base 
states with same energy label). The base states are:  

 
 |200> = |1>, |210> = |2>, |21+1> = |3> and |21-1> = |4>;  
 

with obvious notation. A general quantum state is given by the linear 
superposition: 
 <r|Ψ>= C1<r|1>+C2<r|2>+C3<r|3>+C4<r|4>  (4.5.1) 
 
In the fully spherical symmetric base state without perturbation there are four 
special linear superpositions: 
 
 [1 0 0 0], [0 1 0 0], [0 0 1 0] and [0 0 0 1]  (4.5.2) 
 
These are eigen vectors for the non-interacting system written in a fancy way. We 
want now to calculate four linear superpositions corresponding to 

! 

ˆ H (F) fully 
diagonal. We will take advantage to learn a new technique to solving this and 
many other problems. 

The average value of the energy operator calculated with the wave function 
(4.5.1) is given by: 
 <Ψ|

! 

ˆ H (F) |Ψ > =  Σi=1,4Σj=1,4 <i|

! 

ˆ H (F)|j> C1* Cj   (4.5.3) 
 
Including the normalization condition on the wave function form the functional: 
 
 J= <Ψ|

! 

ˆ H (F) |Ψ > - λ <Ψ | Ψ > (4.5.4) 
 
By calculating ∂J/∂Ci* for i=1,2,3 and 4 and imposing stationary solutions, 
namely ∂J/∂Cj*=0 one obtains the set of equations: 
 
 Σj=1,4 (<i|

! 

ˆ H (F)|j> - λ<i|j>) Cj = 0    for i=1,..,4.  (4.5.5) 
 
There are four equations to determine the amplitudes and λ. The system has non-
trivial solutions if and only if the determinant of the matrix (<i|

! 

ˆ H (F)|j> - λ<i|j>) 
is zero.  

To calculate the matrix elements go back to the original definitions. The 
diagonal terms for the interaction operator are zero because the dipole moment 
operator has parity –1. Then E2s=E2p and we take it to be zero leading to - λ term 
along the diagonal. The term <1|

! 

ˆ V |2> = <200|

! 

ˆ V |210> has the right symmetry, 
namely a change of angular momentum with m=0; the dipole operator, we call it 
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Z. The terms <1|

! 

ˆ V |3> = <200|

! 

ˆ V |211> and <1|

! 

ˆ V |4> = <200|

! 

ˆ V |21-1> are equal to 
zero as the operator do not depend upon ϕ. The matrix looks like 

 

! 

det

"# Z 0 0

Z "# 0 0

0 0 "# 0

0 0 0 "#

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

= 0 (4.5.6) 

We have two solutions with λ =0 and two solutions coming from λ 2–Z2=0, 
namely, λ =±Z. The corresponding eigen vectors are: 
 
         1/√2 |1> -1/√2 |2> , λ = -Z ;  
 1/√2|1>+1/√2|2>, λ =+Z; 
 |3> , λ = 0; |4>, λ =0 (4.5.7) 
 
We can rewrite this result in a matrix form as follows: 

 

! 

1 2 3 4( ) 

! 

1/2 1/2 0 0

" 1/2 1/2 0 0

0 0 1 0

0 0 0 1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 = 

  

! 

1/2 |1> " 1/2 | 2 >

1/2 |1> + 1/2 | 2 >

| 3 >

| 4 >

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

= 

! 

1' 2' 3' 4'( )   (4.5.8) 

 
The system presents a new base set once the total Hamiltonian is rendered to a 
diagonal form. 

 Now we can go back to the study of quantum states (row vectors). A 
comparison makes sense if we keep fixed the base set and use the 4x4 matrix to 
transform the row vectors standing for the initial conditions. Thus is we prepare 
the state as [1 0 0 0]: 

 

! 

1 2 3 4( )

! 

1/2 1/2 0 0

" 1/2 1/2 0 0

0 0 1 0

0 0 0 1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

 

! 

1

0

0

0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 =  

 1/√2 |1> -1/√2 |2> = 
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! 

1 2 3 4( ) 

! 

1/ 2

"1/ 2

0

0

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

  (4.5.9) 

After interaction the system is found on a linear superposition. What will happen 
if we switch off the interaction if the quantum state is 1/√2 |1> +1/√2 |2>? The 
answer should be simple: it will stay in that linear superposition because there is 
no coupling available. 

Thus, interaction introduced via 

! 

ˆ V -operator yields a subspace of dimension 2 
and eigenvalues λ = -Z and λ =+Z. The initially degenerate levels in absence of 
interaction are coupled producing a pair of orthonormal states such that if one 
prepares the quantum state with only one component belonging to this subspace 
after interaction we will get coherent linear superpositions. If we prepare an 
initial state with amplitude outside the virtual subspace, say [0 0 1 0] nothing will 
happen in first order. 

There are two points that we would like to stress before opening the Fence to 
the electro-magnetic (EM) radiation in the following sections. The first concern a 
physical description of the coupling operator -e

! 

ˆ r ⋅F. The source generating the 
force is “external” to the I-frame system. If we were to use a Newtonian simile, 
the force put on acceleration as it were onto the I-frame system that is always 
fully spherically symmetric. We can start timing the process by initiating the 
force at a given moment and keep it in action. The quantum state of the system 
would have changed as indicated above. By switching off the force, we set up to 
measure the time evolution of the system until getting at a stationary state. 

The second aspect concerns our example of chemical reaction introduced in 
Chapter 1. Now the force will be useful to introduce activation effects. Energy 
exchange would require a time dependent force. Once you switch off the external 
field we will measure the system by monitoring the intensity response for the 
product channel. That response is just the amplitude at the product channel taken 
as the square modulus. 

One of the sources providing effective forces on to an electronic system is the 
radiation field. 

 
 

4.6. Revisiting projected equations 
 
The general structure of quantum mechanics does not require of a particle or a 
wave model. This results in an abstract modern quantum theory separating 
“kinematic” from “dynamic” aspects. Projecting the abstract framework in 
configuration space, that is a pure mathematic space, the time-dependent 
Schrödinger equation (1.3.1.6), namely, (i  

! 

h) ∂| Ψ,t>/∂t =

! 

ˆ 
H |Ψ,t>  becomes with 
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the help of unit projector operator

! 

ˆ 1 , namely, ∫dq’| q’> <q’|, (Cf. eq.(3.1.4) a 
linear superposition with amplitudes indicated in curly brackets: 
   ∫dq’| q’> {(i  

! 

h) ∂<q’| Ψ,t>/∂t – 
   ∫dq’’<q’|

! 

ˆ 
H |q’’> <q’’|Ψ,t> } = 0 (4.6.1) 

This equation is formally equivalent to eq.(1.3.1.6). Introducing a time evolution 
operator we can relate an initial quantum state projected in configuration space to 
the quantum state at another space-time. To do this, take the curly bracket 
expression and insert the operator 

! 

ˆ U (t,to) as follows:  
  {(i  

! 

h) ∂<q’| Ψ,t>/∂t –  
  ∫dq’’<q’|

! 

ˆ 
H |q’’> <q’’|

! 

ˆ U (t,to)|Ψ,to> }=0.  
Integrating in time we get:  
  <q’| Ψ,t> = <q’| Ψ, to> + 
  (i  

! 

h)-1∫to
t dt’ ∫dq’’<q’|

! 

ˆ 
H |q’’><q’’|

! 

ˆ U (t’,to)|Ψ, to>.  
That in terms of wave functions reads: 
  Ψ( q’,t)= Ψ( q’,to) –  
  (i/  

! 

h) ∫tot dt’ ∫dq’’ ∫dq’’’  
  <q’|

! 

ˆ 
H |q’’> <q’’|

! 

ˆ U (t’,to) |q’’’> Ψ( q’’’,to) (4.6.2)  
The equation tells us that the wave function of the system can be constructed 
starting from knowledge of the quantum state Ψ(q’’’,to) prepared in the 
laboratory and the knowledge of the projected evolution operator, <q’’|

! 

ˆ U (t’,to) 
|q’’’>; integration over the configuration space  ∫dq’’’ ensures that all relevant 
information gathered at to will be included. 

Equation (4.6.2) contains all what is necessary to calculate time evolution of 
the initial quantum state once the complete configuration space q’ is covered. 
From this point onwards there are many ways to transform the equation into a 
more simple form by using appropriate models. We will do it below. The results 
then at one stage or another must be contrasted to data collected in laboratory 
experiments. 

First a diagonal model:  
  <q’|

! 

ˆ 
H |q’’> = δ(q’-q’’) <q’|

! 

ˆ 
H |q’>.  

Introducing this equation into (4.6.1) after performing the integration over the 
dq’’ measure the result is an integral equation that is valid for all neighborhoods 
of the base state | q’>: 
  {(i  

! 

h) ∂<q’| Ψ,t>/∂t - <q’|

! 

ˆ 
H |q’> <q’|Ψ,t > } = 0 

     (4.6.3) 
For this linear superposition to hold it is necessary and sufficient that for any 
neighborhood of a configuration point q’ and the entire integration domain 
(configuration space), the term in curly brackets be equal zero.  
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 The eq.(4.6.3) is commensurate to abstract Schrödinger equation (1.3.1.1) 
this time expressed in configuration space. To close the loop one takes the 
assignment in the integrand of eq.(1.1.3):  
  <q|

! 

ˆ 
H |q> <q|Ψ,t > →  

! 

ˆ 
H (

! 

ˆ q ) <q|Ψ,t >  (4.6.4) 
This rearrangement, once introduced in eq.(1.1.3) leads to the time dependent 
equation having the form Schrödinger’s used in his seminal paper (1926). 
Combining eq.(4.6.3-4) one gets: 
  { i  

! 

h  ∂ /∂t  -

! 

ˆ 
H (

! 

ˆ q ) } Ψ(q,t )   = 0 (4.6.5) 
The introduction of 

! 

ˆ 
H (

! 

ˆ q ) is not a logical step. It is a hypothesis that permits 
giving to Schrödinger equation, in configuration space, the same form as in 
abstract space. We assume that the mapping 

! 

ˆ 
H →

! 

ˆ 
H (

! 

ˆ q ) holds true or at least the 
latter permits grabbing essential aspects of the physics for the given system. The 
Hamiltonians {

! 

ˆ 
H (

! 

ˆ q )} qualifying to represent a given physical system must be 
fully invariant under Lorentz transformations. They are called Hamiltonian 
operators of Schrödinger type. If they are to serve as generators of time 
translation, the self-adjoint property must hold. 
 A second possibility transform Eq.(4.6.2) by taking:  
 <q’’|

! 

ˆ U (t’,to)|q’’’>=δ(q’’-q’’’) 
 <q’’|exp(i

! 

ˆ 
H (t’-to)/  

! 

h)|q’’’> = 
 δ(q’’-q’’’) exp(i

! 

ˆ 
H (q’’,q’’’) (t’-to) /  

! 

h),  
to get after integration over dq’’’:  

 Ψ( q’,t)= Ψ( q’,to) – (i/  

! 

h) ∫tot dt’ ∫dq’’  
 <q’|

! 

ˆ 
H |q’’>  exp(i

! 

ˆ 
H (q’’) (t’-to)/  

! 

h) Ψ( q’’,to).  
This equation is commensurate to eq. (4.6.2). The kernel of this equation 
G(q’,q’’;t’) is known as the propagator kernel:  
 

! 

ˆ G (q’,q’’;t’) =  <q’|

! 

ˆ 
H |q’’>  exp(i

! 

ˆ 
H (q’’) (t’-to)/  

! 

h)   
  (4.6.6) 
Therefore, the wave function can be simply written as: 
 Ψ(q,t)= Ψ(q,to) – (i/  

! 

h) ∫tot dt’ ∫dq’’

! 

ˆ G (q,q’;t’) Ψ(q’,to) 
  (4.6.7) 
This equation is another form of representing the quantum state obtained by time 
evolution in a space-time scheme. We will be back to this form once the 
interaction picture is introduced below. 
 A word of caution is in place here. The coordinate space is an abstract mathematical 
space. No particle position is implied. It is important to get this point right. Because, the 
particle system referred to as material system, sustains the quantum state. The theory 
works with abstract quantum states not with the particles. The only requirement we can 
make is to ensure the material system is somewhere in the space covered by the I-frame. 
 As consequence, there are conceptual difficulties to incorporate basis states from the 
asymptotic fragments referred to separate I-frames into the global system basis set set. 



 CHAPTER 4. QUANTUM STATES FOR SIMPLE SYSTEMS 
 

41 

Some of these issues have been discussed above and we will continue to address them as 
we pursue this work. As a matter of fact, this is not a mathematical problem but a physical 
difficulty to marry abstract Hilbert space with fragments that can be independently 
obtained in real space. 
 
 

4.7. Overview 
 
The issues discussed here have been varied but with a principal motto. A quantum state is 
what will mediate interactions between material systems. 

There is a conservation requirement: the matter content of interacting system must be 
invariant. 

The quantum state belongs to Hilbert space but it is sustained by the material system. 
There are infinities of quantum states but only one material system reckoned in terms of 
fundamental elements. Electrons and nuclei belong to such fundamental components. 

The idea that a material system is in a given quantum base state as a hand is in a glove 
is recussed by logical inconsistency. The linear superposition is not telling a material 
system to be in many base states simultaneously. Acert such proposition collides with 
standard positive logics. 

A material system belons to laboratory (real) space while a quantum state belongs to 
Hilbert space. These two space are not commensurate. 

It is a totally different proposition saying that quantum states are sustained by material 
systems. The example we gave in this chapter when the quantum states of particle in a 
box was analyzed permits appraizing a little better the difference. 

Most of the weirdness associated by many to quantum physics is due to use of terms 
totally inappropriate to describe the state of affair. 

The world as we know it is fully quantum physical. Classical physics categories are 
useful but not compulsory. Out of pragmatism we use them. Thus, wave-particle duality 
is non-sense when applied to describe quantum phenomena. This will be more and more 
clear as we move on examining a host of quantum situation without language that is not 
appropriate because one is mixing non-commensurate levels. 

This last section has as objective to remind the readers on suc drawbacks. 


