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5. Elements of quantum electromagnetism 

 
  
 
 
 
 
 
 
For charged material systems in a classic context electromagnetism provides a 

descriptive frame. Quantum electromagnetism (QEM) concerns understanding 
interactions of charged matter with electromagnetic radiations compatible with 
Planck radiation law.  

This chapter initiates an overview of standard Maxwell equation; chemist, 
biochemists, molecular biologists are not conversant with this domain. We move 
on to examine some mathematical elements required to enter an elementary study 
of quantum electrodynamics. This corresponds to a level 1 (see introduction) where 
no correspondence to laboratory situations is required. We close the chapter with 
an inquiry about what is required to move into real laboratory processes. No 
attempt at completeness is made. The reader is referred to de Oliveira’s 
“Intermediate spectral theory and quantum dynamics” (Birkhäuser, Basel, 2009) 
for an appropriate resource. 

 
 
5.1. Classical Maxwell equations  
 
The electromagnetic field in classical theory appears as two 3-vector fields, the 

electric E and magnetic B. The current density J relates to the electric field by 
Ohm’s law: J = σ E. The symbol σ stands for resistivity. Maxwell equations and 
gauge invariance (see below) can be used to reduce the fields E and B degrees of 
freedom with the help of a single 4-vector field Aµ ≡ (Ao, A), where A is a 
transverse field with two independent components once constraints are made 
effective; the time component Ao depends upon the external sources of charge. 

Maxwell equations describe classical electromagnetism including charge 
conservation: 

∇⋅E = ρ ;  ∇∧ E = -(1/c)∂B/∂t ;  
∇⋅B = 0;  ∇∧ B = J + (1/c) ∂E/∂t   (5.1.1) 
 

Displacement currents are neglected: E=D; this is relevant to propagation of EM 
fields in vacuum. The equations involving curls ∇∧B and ∇∧E for J= 0 tell us that 
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so long there are time dependent electric and magnetic fields their curls do not 
vanish; electric and magnetic fields are hence coupled to each other; the wedge ∧ 
symbol stands for vector product.  

The charge density (ρ) fulfils a conservation equation: ∂ρ/∂t + ∇⋅J =0. Solutions 
to these equations characterize specific EM fields. The free space permeability and 
permittivity constants µo and εo are subsumed as 1/ µo εo = c2. The symbol c is the 
velocity of light. This theory relates to the speed of light the in vacuum electric (εo) 
and magnetic (µo) magnitudes which was a remarkable achievement. 
 A change of magnetic field in time, ∂B/∂t ≠ 0, is related to the curl of an electric 
field, i.e. ∇∧ E. Similarly, a time varying electric field, ∂B/∂t, relates to the curl of 
a magnetic field minus a current, i.e. ∇∧ B – J. Thus, motion transfers into fields.  

When J≠0 and/or external charges are present electric and magnetic fields are 
modulated by the response set up by the material surroundings. Particular cases are 
sketched below.  
 

E&E.5.1-1 Maxwell equations for stationary media 
Medium effects are introduced via two additional field vectors: P and M; they correspond 
to the electric and magnetic polarization of the media, respectively. By definition: 
 
 D = εo E + P and B/µo = H + M 
 
The constants appearing in these equations, εo and µo are vacuum electric susceptibility and 
magnetic permeability. Equations (5.1.1) read now as: 
 
 ∇⋅E = (1/εo) ρtotal = (1/εo) (ρ - ∇P); 
 ∇∧ E = -(1/c)∂B/∂t ;  
 ∇⋅B = 0;   
 ∇∧B = µo (J + ∂P/∂t + ∇∧ M (1/c) εo ∂E/∂t ) 

  
Using the definitions relating the fields in vacuum and in the medium, Maxwell equations 
show a similar form: 
 ∇⋅D = ρ ;  ∇∧ E = -(1/c)∂B/∂t ;  
 ∇⋅B = 0;  ∇∧ H = J + (1/c) ∂D/∂t   (5.1.1’) 

 
The equations relating E to D and H to B are known as constitutive relationships. At the 
simplest level they look like: 
 
 D = κ εo E ;   
 J = σ  E ;  
 H = B/µ. 
 
A treatment for inhomogeneous media is given in Sections 5.5 and 5.6 below. 
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The equations above form among other things the core of solvent effect theories on 
chemical reactions. They indicate that Maxwell equations still holds in an 
“ordinary” material. 

At the Fence, situations where one subsystem is moving with respect to another 
are commonly found.  In the following E&E useful equations are quoted. The 
reader can consult textbooks on electrodynamics (Jackson, Müller-Kirsten) or 
electromagnetism (Panofsky & Phillips). 

 
E&E.5.1-2 Maxwell equations for moving media 
Let v be the velocity of a moving media. The constitutive equations are given as: 
 
 J = σ  (E + v∧ P) = σ  E‘   
 P = εo (κ-1)(E + v∧B) 
Maxwell’s equations can be written as 
 
 ∇⋅D = ρ ; ∇⋅B = 0; ∇∧ E = -(1/c)∂B/∂t ;  
 ∇∧ (B - µoP ∧ v )  = (1/c) ∂D/∂t  (5.1.1’’) 
 
A moving polarized dielectric is equivalent to a magnetized material of magnetic moment: 

Meq = (P ∧ v ) 
 

 
E&E.5.1-3 Conductor motion in a magnetic field 
In this figure it is represented a conducting bar 
moving with velocity v in a static magnetic field B 
perpendicular to v direction. A meter is connected 
via sliding contacts; an electric current is detected 
for v≠0- From this setup one expects an electric field 
E’= v ∧  B so that a current will flow through the 
contacts and be sensed by a stationary galvanometer. 
Whether the source of B is stationary or is in motion 
is of no concern. 
 
 

 
E&E.5.1-4 Classical vector flow 
The simplest I-frame system contains a spin vector S. For a classical system assume the I-
frame carrying a magnetic moment m with fixed modulus m under the motion of the I-
frame. To describe the vector flow besides the local vector density M=ρ(r,t) m(r,t) there is 
need of the I-frame linear velocity v(r,t) and its angular velocity ω(r,t); the direction of this 
latter vector is perpendicular to the plane made by m and v. 

Consider a volume element ΔV= Δx Δy Δz and the time interval from t to t+dt and 
calculate the change in time of the local vector density: 

 

Stationary sliding contacts

B

B

Galvanometer

v
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 dM/dt = -∇⋅ (v(r,t)M(r,t)) + ω(r,t) ∧ M(r,t) 
 
The term in round parenthesis (v(r,t)m(r,t)) is a tensor with elements:  
 
 (v(r,t)M(r,t))ij = v(r,t)i M(r,t)j.  
 
The equation above is known as vector continuity equation. Here, this continuity equation 
derives from the kinematics and the invariance of m only; the equation is independent 
from dynamic laws. Now, introduce the currents: 
  
 js(r,t)=v(r,t)M(r,t) and  
 jω(r,t)= ω(r,t) ∧M(r,t)  
 
These are the linear and angular current densities and the equation above takes on the form: 
 
 dM/dt = -∇⋅ js(r,t) + jω(r,t) 
 
These relationships are of interest for discussing magnetic materials. 
 
E&E.5.1-5 
A magnetic dipole µ (field) arises from a closed loop current (i) whose direction is 
perpendicular to the loop and magnitude is given by 
 µ = i A 
The current i is given in amperes (C/s); A is the area of the loop (m2). The units of the 
magnetic dipole are coulombs (C) meters2 seconds-1. For a circular loop with v standing for 
the charge velocity and r the loop radius one has: 
 
 i=qv/2πr 
 
The magnetic dipole reads: 
 
 µ = i A= (qv/2πr) 2πr2 = qrv/2 
 
Because the direction of the magnetic dipole is perpendicular to the loop plane one can 
write with vector notations: 
 µ = q r∧v/2 
 
Using the definition of angular momentum L= r∧p and bearing in mind that for a classical 
mechanical system: p=mv 
 
 µ = q r∧v (m/2m) = q r∧p (1/2m) =q L / 2m 
 
For an electron take q=-|e| the magnetic moment is just opposite to the direction of the 
orbital angular momentum: 
 
 µ = -(|e| /2m) L 
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E&E.5.1-6 
In quantum mechanics the angular momentum is given by: 
 
 

! 

ˆ L 
2 |L,ML> =h2 L(L+1) |L,ML> 

 
< L,ML|

! 

ˆ L 
2 |L,ML> = h2 L(L+1) . The magnetic dipole takes on the form: 

 
 µ = -(|e| h/2me) [L(L+1)]1/2 = - βe[L(L+1)]1/2  
 
The quantity βe= (|e| h/2me) is known as Bohr magneton for the electron. 
Now, the interaction operator for a magnetic dipole in a magnetic field B has the form: 
 
 

! 

ˆ V  = - 

! 

ˆ µ  . B  
 
The units of the magnetic field are J A-1 m-2 that is equal to one Tesla (T). Thus, 1T = 1 J. 
A-1 . m-2.  The Bohr magneton units are J.T-1. 
 
 

Consider a system in absence of material filling the space. The EM field energy 
for a system in vacuum is given by: 

 
 EEM = (1/8π) ∫ (E*E + B*B) d3x (5.1.2) 
 
The energy density is the function: 1/2 (E*E + B*B).  

The total momentum of the field PEM is obtained with the help of Poynting 
vector S relating electric to magnetic field: 

 
 PEM = (1/4πc) ∫ (E∧B) d3x = ∫ S d3x  (5.1.3) 
 
For interactions where the EM field changes, there will be a change in momentum 
that we have to take into account; note that the wedge product has energy 
dimension ([E]) so that [E]/c has momentum dimension.  
 The Poynting vector S permits calculating energy flow.  Charges in a dielectric 
piece of matter in motion are accelerated by electromagnetic fields thereby 
producing radiation; the relative direction of the velocity and electric-field vectors 
determines the direction of the energy flow between field and matter.  For a total 
field consisting of incident and radiated electromagnetic field, interference term 
between the two would provide directional emission. 

Thus the EM fields determine relevant physical quantities. It is then natural to 
seek ways and means to calculate them for specific situations.  
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 An appropriate model to describe EM fields is a system with no charges (ρ = 0) 
and  no currents (J= 0). The EM fields in terms of the vector potential A(x,t) take 
on the forms:  
 E(x,t) = - (1/c) ∂A(x,t)/∂t  
 B(x,t) = ∇∧ A(x,t) (5.1.4) 

 
One can sense the economy produced by the introduction of this vector potential.  
 In reciprocal space, the equations are uncoupled. The reciprocal space 
representation is introduced via linear superpositions in the base set of plane wave 
set {exp(i k .x)}x. For fields that can be written E(x,t)= E(x)exp(iωt) and B(x,t)= 
B(x)exp(iωt) the Fourier transforms are:  
 
   E(k) = (1/4π)3∫d3x E(x) exp(i k .x)   (5.1.5a) 
 B(k) = (1/4π)3∫d3x B(x) exp(i k .x)   (5.1.5b) 
 
These relationships can be inverted to get the electric E(x) and magnetic B(x) 
fields in the plane wave set {exp(i k .x)}k. 

The coupled differential equations (5.1.1) in real space, i.e. ∇∧ E = -(1/c)∂B/∂t 
and ∇∧ B = J + (1/c) ∂E/∂t, in k-space are uncoupled. Maxwell equations in k-
space read:  
 i k .E(k) = 0 ; 
 i k ∧ E(k) = -(1/c)dB(k)/dt  (5.1.6a) 
 i k .B(k) = 0 ;  
 i k ∧ B(k) =  (1/c)dE(k)/dt.  (5.1.6b) 
 
From eqs.(5.1.6) one obtains differential equations for the k-fields. Take vector 
product from the left with ∇ and use of a vector identity one gets thanks to 
transverse condition on the electric field (Coulomb gauge): 
 
 d2E(k)/dt2 + c2 k2 E(k)= 0  (5.1.7a) 
 d2B(k)/dt2 + c2 k2 B(k)= 0 (5.1.7b) 
 
Similar equations obtain for the transverse potential: A(k).  

The import of k-equations is enormous. They imply Maxwell equations involve 
fields at the same point in Fourier space (reciprocal space) defining the EM field in 
vacuum only; different cases enter via appropriate boundary conditions. Solutions 
to these equations yield a mode representation for the EM field.  

The mode representation is examined with the help of A. The vector potential A 
satisfies also the wave equation and a transverse condition: 
 

 (1/ c2) ∂2A/∂t2  - ∇2 A = 0;    
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 div A = ∇⋅ A = 0 (5.1.8) 
 
The transverse EM (t-EM) fields fulfill the divergence equation in (5.1.8); electric 
and magnetic fields are transverse as well; this follows from eq.(5.1.1) and the 
conditions imposed, namely, zero external charge density, ρ=0.  

The vector εk is a unit polarization vector, the wave vector k is perpendicular to 
ε  = (ε1, ε2, ε3), namely, k⋅ ε  = 0. In general, two independent vectors εk correspond 
to each separate vector k. For the sake of simplicity we avoid introduction of 
another index. The vector k indicates propagation direction. 
 

E&E-5.1-7 Derive equation (5.1.8) 
Start from Maxwell equation relating the curl of B to the time derivative of the electric 
field: ∇∧ B = J + (1/c) ∂E/∂t. The current J is zero. Use the definition between B and A 
from eq.(5.1.4) to get: 
 ∇∧ ∇∧ A = (1/c) ∂[-1/c)∂A/∂t] /∂t = -(1/c2) ∂2A/∂t2  
 
From a well-known identity, namely, ∇∧ ∇∧ A = ∇( ∇⋅ A ) -∇2 A and the transverse 
condition ∇⋅ A =0 by replacement one obtains eq.(5.1.8). 
 
E&E.5.1-8 Polarized light representation 
A monochromatic light wave propagating in the 3-direction and polarized in 2-direction is 
given by: 
 E =Eo ε2 cos(k x3 – ωt) (5.1-5.1) 
 
For a field polarized along 1-direction you change the polarization vector ε2 by ε1; the 
propagation direction still is x3. The frequency (pulsation) ω is related to the energy quanta 
(hω) that this specific type of light can exchange with material systems; the number 
(intensity) is related to the amplitude (|Eo |2) as shown below. 
 The vectors E, B and k are mutually perpendicular; the direction of propagation is given 
by k. The plane perpendicular to k is the phase plane.  

Note that (1/c2)|E|2=|B|2. The vectors ε1 and ε2 span the plane orthogonal to k. For the 
plane wave E = Eo exp(i(k·x- ω t) the vector Eo defines the direction of oscillation.  

If Eo is constant, the wave is linearly polarized. The transport of energy takes place in 
the direction of the propagation vector k and is proportional to E∧B. A general case 
corresponds to a decomposition of the electric and magnetic vectors along the polarization 
directions: E = E1 + E2; B = B1 + B2; obviously, |E| = |Eo| and with i=,2: 

 
 Ei(x,t) = ε iEi exp(i(k·x- ω t) ;   
 Bi(x,t) = ε iBi exp(i(k·x- ω t) (5.1-5.2) 

 
Because E and B are perpendicular one can take E as the representative of the whole wave. 
The Ei are complex numbers, and can be written as: 
 
 E1 = | E1| exp(iθ1) and E2 = | E2| exp(iθ2) (5.1-5.3) 
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It is a usual practice to take θ1=0 and θ2= θ because only the relative phase makes sense. 
With this convention, θ= 0 corresponds to a linearly polarized wave: 
 
 E = (|E1| ε1 +  |E2| ε2) exp(i(k·x- ω t) (5.1-5.4) 
 
The real part (Re) of E is given by 
 
 ReE =  (|E1| ε1 +  |E2| ε2) cos(k·x- ω t) (5.1-5.5) 
 
This latter equation corresponds to our first one with a more detailed content. For θ=φ≠0 
the wave is elliptically polarized: 
 
 E = |E1| ε1 exp(i(k·x- ω t) +   
 |E2| ε2 exp(i(k·x- ω t + φ)  (5.1-5.6) 
 
A circularly polarized wave obtains when |E1|=|E2| and φ= ±π/2, i.e. 
 
 E =  |E1| ( ε1 +  ε2 exp(±iπ/2)exp(i(k·x- ω t) =   
 |E1| (ε1 ± ε2)exp(i(k·x- ω t) (5.1-5.7) 
 
The real part of the electric field vector reads: 
 
 ReE =  |E1|ε1 cos(k·x- ω t) ± |E1|ε2 sin(k·x- ω t) (5.1-5.8) 
 
 

The formalism presented so far will be adapted to quantize the t-EM field. The 
simple model of radiation enclosed in a box is used to this end; from now on A(x,t) 
is a transverse vector potential for which no special symbol is used to alleviate 
notations. Periodic boundary conditions with a cubic box of length L, turns now the 
transverse potential into a Fourier series:  

  
 A(x,t) =  Σk √(4πc/L3kk) εk ak(t) exp(i kk⋅ x)  (5.1.9)  
 

The problem is the determination of the time dependence for the amplitudes ak(t); | 
kk|= kk. Combining the last two equations one gets a harmonic oscillator equation 
for each field mode with wave vector kk:  
 
 

! 

˙ ̇ a 
k
+ ωk

2 ak(t) = 0 (5.1.10) 
 
The frequency ωk equals to c kk; a time dependent solution reads:  
 
 ak(t) = ak exp(-i ωk t) (5.1.11) 
 
For each frequency there is a normal mode equation describing time dependence.  
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E&E-5.1-9 Show that solutions given in eq, (5.1.11) fulfill differential eq,(5.1.10) 
To show this, take the first time derivative of the equation (5.1.11): 
 
  dak(t)/dt = d{ ak exp(-i ωk t)}/dt = -i ωk ak exp(-i ωk t) 
 
The second derivative 

! 

˙ ̇ a 
k

yields 
 
 

! 

˙ ̇ a 
k

= d{dak(t)/dt}/dt = (-i ωk)2 ak exp(-i ωk t) =  
 -ωk

2 ak exp(-i ωk t) = -ωk
2 ak(t) (5.1-7.1) 

 
Sum now ωk

2 ak(t) to the first and last terms above to get equation (5.1.10). 
 
 

The set of time independent amplitudes {ak} completely defines the space part 
of the time independent vector potential:  

 
 A(x) = Σj √(4πc/L3kj)[ε jaj exp(i kj⋅ x) + ε jaj*exp(-i kj⋅ x)]
 A(x) = A+(x) + A-(x) (5.1.12) 
 
The sum is over positive and negative k-vectors is represented by A+(x) and A-(x), 
respectively. Conventionally, the plane waves in A+(x) are moving from left to 
right, while in A-(x) they do from right to left. Thus, given a set of {ak}, the vector 
potential A(x) is fixed once the polarization vectors are known; this would reflect 
the experimental setup used to prepare the electromagnetic field. Moreover, from 
eq.(5.1.4) the electric and magnetic fields can be calculated for specific cases. 

The energy expression eq.(5.1.2) can be transformed by introducing the 
definitions from eq.(5.1.4) and the Fourier expansion of A(x,t) from eq.(5.1.9) the 
electromagnetic energy can be written as sum of EM modes: 

 
 EEM =  Σk ωk |ak|2   (5.1.13) 
 
The total momentum of the field PEM is obtained taking into account that the scalar 
product k⋅ak= 0, the momentum is given the form: 
 
 PEM  =  Σk kk |ak|2 (5.1.14) 
 
These are the results for the energy and momentum of the electromagnetic field in 
absence of external sources of radiation or absorption (or scattering).  Each k-mode 
contributes independently from others to energy and momentum. In absence of 
matter, there is no mixing of frequencies. A particular field is characterized by the 
non-zero amplitudes |ak|2. 
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The energy formula eq.(5.1.2) is a quadratic real form. The energy is not 
reckoned from the field directly but from their square modulus. A similar 
expression obtains from the mode decomposition, eq.(5.1.13). This latter faintly 
suggests a quantum mechanical kinship.  

But light was considered as the paradigm of a classical wave. The wave picture 
replaced Newton’s classical particle description. The surprise came after Planck 
discovery that the EM field exchange energy with sources in finite amounts, i.e. 
quanta. This energy quantum is proportional to a frequency; Planck constant (h) 
was born in 1900. Quantum physics started to be on the move ever since changing 
the face of physics and chemistry; later on is changing the face of biological 
sciences.  
 
 

E&E-5.1-10 Gauge transformation 
The description of t-EM fields in terms of potentials introduces extra degrees of freedom 
that cannot be independent. While the fields (E and B) remain unchanged under a so-called 
gauge transformation the potentials change: 
 
 A(x,t) → A(x,t) + ∇Γ(x,t) 
 φ0(x,t) → φ0(x,t) – (1/c) ∂ Γ(x,t)/∂t (5.1-10.1) 
 
The gauge function Γ(x,t) is an arbitrary function of x and t. We are in real space. When a 
particular gauge is selected to handle a type of problem, the unwanted degrees of freedom 
can be eliminated using the constraint relations introduced by the choice of gauge. 
 The pair then (A(x,t), φ0(x,t)) is referred to as a gauge. There is infinity of gauges 
leaving invariant the electric and magnetic field. Remember that  
 
 E = -∂A|∂t - ∇x φ

0(x,t) and  
 B =- ∇x ∧A(x,t),  
 
so that these potentials are handy when one is to calculate the electric and magnetic fields 
for a given situation.  

To find out a specific gauge one has to find out the gauge function Γ(x,t). This result 
obtains by imposing supplemental conditions that are known as gauge conditions. 

For the Coulomb gauge, the condition is ∇x ⋅A(x,t) = 0. Then, the vector A turns into a 
transverse vector A⊥ that is perpendicular to the propagation vector k. By taking φ0(x,t)=0 
we have the electromagnetic gauge. In this case, 

 
 E(x,t)= -∂A(x,t)|∂t. 
 
Göppert-Mayer gauge. This gauge is particularly useful in molecular quantum mechanics. 
If the origin of the I-frame system is indicated by xo let us define Γ(x,t) for this case: 
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 Γ(x,t) = - (x- xo) ⋅  A⊥(xo,t) (5.1-10.2) 
 
The transformation may give a special role to an origin in the material system; for us it will 
be the origin of the I-frame to which the quantum molecular system is attached. The 
transformed transverse vector potential reads: 
 
   A’(x,t) = A⊥(x,t) - A⊥(xo,t)    (5.1-10.3) 
   φ'0(x,t) = UCoul(x) – ((x- xo) /c) ⋅∂ A⊥(xo,t)/∂t  (5.1-10.4) 
 
The Hamiltonian in this gauge takes on the form: 
 
 

! 

ˆ H  = (1/2M) [

! 

ˆ p -q A’(

! 

ˆ x ,t)]2 +  
  UCoul(

! 

ˆ x ) – q (

! 

ˆ x -xo) ⋅∂ A⊥(xo,t)/∂t  (5.1-10.5) 
 
The last term is the electric dipole moment operator: 

! 

ˆ µ  = q (

! 

ˆ x -xo). The interaction operator 
is known as the electric dipole Hamiltonian: 
 
 

! 

ˆ H ’I  = 

! 

ˆ µ  ⋅∂ A⊥(xo,t)/∂t = - 

! 

ˆ µ  ⋅  E(xo,t)  (5.1-10.6) 
 
In the long wave length approximation, the external potentials associated to the radiation 
field can be calculated at xo and, consequently, from eq. (5.1-8.3) one obtains A’(xo,t) =0. 
The approximate Hamiltonian takes on the form: 
 
 

! 

ˆ H  = (1/2M) (

! 

ˆ p 2 + UCoul(

! 

ˆ x ))- 

! 

ˆ µ  ⋅  E(xo,t)  (5.1-10.7) 
 
This operator is extensively used in molecular quantum mechanics. In the long wave length 
model the interaction operators, 

! 

ˆ µ  ⋅  E(xo,t) and 

! 

ˆ p  ⋅A yield equivalent results.  
 

 

 The word photon is used here mostly in the sense of amount of energy and 
linear momentum that can be exchanged with material systems at Fences. Albeit 
the particle idea smuggles all the time, one should be aware that it is a way of 
talking; you cannot “travel” with a photon because this is massless (Mphoton= 0) and 
there is no I-frame where to hang this “particle” (states); the I-frame that makes 
sense is the one for the sources or sinks or scatter center in real space. The 
expression: “create a photon at a point in real space” is a way of talking. The 
meaning will be clear, we hope, once you have gone over the next chapters. 

Hint: Before entering Section 5.2 pay a visit to the harmonic oscillator in Section 
4.4 again.  

 We are about to jump into quantum dynamical aspects concerning EM 
radiation. It is thus advisable to pause and signal some important features of 
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quantum physical formalisms.  All possibilities a physical system may have are 
coded in one stroke, as it were. The base set must be complete so that any possible 
quantum state can be represented as a linear superposition. The EM field carries 
energy and signals. But an appropriate Hilbert space does not carry energy is just 
an abstract space. At the Fence the projected theory must take into account this 
experimental fact in one way or another. This is the issue examined below. 
 
 
5.2. Quantum electrodynamics: elements 

 
The construction of base sets able to represent quantum states for the t-EM field in 
a space where energy available to be transferred that is the issue; these amounts of 
energy must be reckoned. 

The amplitudes fulfilling eq.(5.1.10) are replaced by operators: 
 

  akα
+→ 

! 

ˆ a 
k α

+   &     akα→ 

! 

ˆ a 
k α (5.2.1) 

 
Remember, the functions akα and akα

+ fulfill harmonic oscillator equations. From 
Section 4.5.1 we know that a simple translation of these symbols into annihilation 
and creation operators is possible. These operators must fulfill commutation 
relations of the kind: 
 [

! 

ˆ a i α,

! 

ˆ a j α’] = [

! 

ˆ a iα
+,

! 

ˆ a j α’
 +

 ] = 0   
 [

! 

ˆ a i α,

! 

ˆ a j α’
 +] = δij δ α α, (5.2.2) 

 
These operators act in Fock space formed by base state the label of which count 
number of energy quanta in the field. 

Before constructing Fock space let us obtain physical operators related to t-EM 
fields. The operator form for transverse electric E⊥(x), magnetic B(x) and A⊥(x) 
fields at x, a point in real space, are obtained by using eq.(5.2.1) in conjunction 
with eq.(5.1.12) and, once ˆ A ⊥(x) is obtained, eqs.(5.1.2) is used to get the field 
operators: 
 ˆ A ⊥(x) = Σj Aωj [

! 

ˆ a j ej exp(i kj⋅x) +

! 

ˆ a j
+ ej exp(-i kj⋅x)] = 

  ˆ A 
+
⊥(x) + ˆ A 

-(x) (5.2.3) 
 
 ˆ 

E ⊥(x) = Σj iEωj[

! 

ˆ a j ej exp(i kj⋅x) -

! 

ˆ a j
+ ej exp(-i kj⋅x )] = 

 ˆ 
E 

+
⊥(x) + ˆ 

E 
-
⊥(x) (5.2.4) 

 
 ˆ 

B (x)  = Σj  iBωj [

! 

ˆ a j (κ ∧ ej )exp(i kj ⋅ x ) –  

 

! 

ˆ a j
+ (κ∧ej )exp(-i kj ⋅ x )] = ˆ 

B 
+(x) + ˆ 

B 
-(x) (5.2.5) 
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From the above definitions show that ( ˆ A 
+
⊥(x))†  = ˆ A 

-
⊥(x); ( ˆ 

B 
+
⊥(x))†  = ˆ 

B 
-
⊥(x); 

( ˆ 
E 

+
⊥(x))†  = ˆ 

E 
-
⊥(x).  The amplitudes are defined by: 

 
 Eωj = [(  

! 

h  ωj)/2L3]1/2 ;   
 Bωj = Eωj /c ;  
 Aωj =Eωj /ωj (5.2.6) 
 
Note that the product Eωj

* Eωj has dimension of energy density. The dimension of 
Aωj corresponds to a linear momentum. L is the cubic box length. 
 

E&E5.2-1 Show Aωj actually has linear momentum dimension 
To get a start we must remind that due to the unit chosen, the electron charge (e) and the 
speed of light (c) have the numerical values: e=c=1. The amplitude actually looks like (e/c) 
Aωj.  From eq.(5.2.6) we deduce that dim[(  

! 

h  ωj)/2L3]1/2 = [(Energy x T2)/L3]1/2. The 
dimension of e/c can be obtained by using Coulomb law: dim(e)= [(Energy x L)]1/2. We 
rearrange the dimension of dim[(  

! 

h  ωj)/2L3]1/2 to make explicit the charge first, to get: 
dim(e)/dimL dim[T2)/L2]1/2= [Energy]/[speed]. This latter corresponds to the dimension of 
linear momentum. It is important to remember that the momentum of a charged particle 
interacting with an electromagnetic field in part it is mechanical and in part 
electrodynamics. This is the reason for the difficulties found in separating charges from 
electromagnetic fields. The operators just reflect this type of situations. 

 
 
5.3. Operators in Fock space 

 
The energy operator 

! 

ˆ 
H EM obtains after replacing in eq.(5.1.13) the fields in 

terms of creation and annihilation operators given above: 
 

 

! 

ˆ 
H EM =  Σj  (  

! 

h  ωj / 2)(

! 

ˆ a j
+

! 

ˆ a j
  + 

! 

ˆ a j
 

! 

ˆ a j
+) =  

 Σj  (  

! 

h  ωj )(

! 

ˆ a j
+

! 

ˆ a j
  + 1/ 2) (5.3.1) 

 
The second equality follows from the commutation relationships. Naturally, this 
equation has the same form as eq.(4.5.1.9). All these operator symbols make sense 
when they act on the vacuum state; the sum Σj (  

! 

hωj )/2 is necessarily infinite 
because quantum mechanics takes care of all possibilities, that in this case are 
infinite, but this energy is not a term at the Fence; it only makes sense in Fock 
space. It is the wave function at the Fence that mediates both worlds. Keep this 
caveat always in mind as it applies in abstract quantum physics. Compare with 
results of Sect.4.4.1. 

The impulse operator of the transverse field ˆ 
P t is given from eq.(5.1.14): 
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 ˆ 
P t =  Σj  (  

! 

h  kj / 2)(

! 

ˆ a j
+

! 

ˆ a j
  + 

! 

ˆ a j
 

! 

ˆ a j
+) =  

 Σj    

! 

hkj  

! 

ˆ a j
+

! 

ˆ a j (5.3.2) 
 
The second equality follows from Σj  (  

! 

h  kj /2) = 0. The global system is not 
moving. We have it referred to an I-frame. 

Le tus introduce spin angular momentum operator. Gauge invariance requires 
deletion of two degrees of freedom from the field A. This amounts to remove Ao 
(Coulomb potential) and A3 for the case where the momentum (k) is aligned in the 
3-rd direction (usually referred to as the z-axis in real space). This leaves only two 
independent polarization states. 

The commutation relationships including polarization are given in eq.(5.2.2); 
the polarization labels can take two values only, say 1 and 2. 
 The expressions for the energy and momentum are a little more involved but we 
do not need to write them down. Instead, angular momentum operators do require 
polarization labels for their definition. The i-th component of the angular 
momentum operator for the t-EM field is given by: 
 
   

! 

ˆ " i = ∫ d3r [ ˆ r ∧:( ˆ 
E ⊥ ∧ 

! 

ˆ 
B  ):]i    (5.3.3) 

 
The operator products in the round bracket between colons (:…:) must be put in 
normal order, i.e. all creation operators to the left of annihilation ones; e.g. 

! 

ˆ a 
 +

! 

ˆ a . 
In tensorial notation: 
   

! 

ˆ " j = -i ∫ d3r :∂ ˆ A 
b/∂t (Lj ˆ A 

b- iεjbl ˆ A 
l):  (5.3.4) 

 
The orbital angular momentum

! 

ˆ L  = -i(

! 

ˆ r ∧∇); note h=1. The spin of the field 
quantum base state, named as photon without implying a particle picture (only 
particle-state), is given as: 
 
   

! 

ˆ " j spin = - ∫ d3r :∂Ak/∂t εjkl ˆ A 
l):   (5.3.5) 

 
Introducing the creation and annihilation operators in the Coulomb gauge, ∇• E =0, 
the spin operator reads as: 
 
   

! 

ˆ " spin = Σn;α≠α’ ( εn
α ∧ εn

α’ ) 

! 

ˆ a n α’
+ 

! 

ˆ a n α  (5.3.6) 
 
The wedge (cross) product can be simplified by recalling (ε1 ∧ ε2)=

! 

ˆ k . Sum over 
polarization leads to 
   

! 

ˆ " spin = Σn 

! 

ˆ k n  (

! 

ˆ a n2
+ 

! 

ˆ a n 1 − 

! 

ˆ a n1
+ 

! 

ˆ a n2 )  (5.3.7) 
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Introducing now a new polarization base, namely, circular or helicity base, defined 
by: 
   ε+ =-(1/√2) (ε1 + i ε2 )   
   ε- =-(1/√2) (ε1 - i ε2 )    (5.3.8) 
 
 The plus component has the spin in +

! 

ˆ k -direction and the minus component in -

! 

ˆ k -
direction. Now we define new operators that eliminate the mix of 1,2 sub index in 
eq.(5.3.7) such that 
   

! 

ˆ " spin = Σn 

! 

ˆ k n  (

! 

ˆ a n+
+ 

! 

ˆ a n + − 

! 

ˆ a n−
+ 

! 

ˆ a n,− )  (5.3.9) 
 
There is something unusual with the photon spin. We learn that a system with spin quantum 
number s has a 2s+1 multiplicity. For s=1, there should be three orthogonal base states. The 
photon base states only show two out of three states, only helicity states ±s are allowed; the 
other state is just forbidden. This is taken to be indication for the zero mass of photon 
forbids helicity zero; the Coulomb gauge imposes a transverse field. 

Finally, let us check the mode energy derived from classical EM. The classical formula 
for EEM = (1/8π) ∫ (E*E + B*B) d3x and replace by the operators ˆ 

E ⊥(x) and ˆ 
B (x) from 

eqs. (5.2.4) and (5.2.5). If one uses a time dependent form, this one will be average out over 
a cycle. Here one gets for mode k:  

 
  

! 

ˆ E 
k
=iEωk[

! 

ˆ a k ek exp(i k⋅x)-

! 

ˆ a k
+ ek exp(-i k⋅x )]  

 

! 

ˆ B 
k
= iBωk[

! 

ˆ a k(k∧ek )exp(i k⋅x)–

! 

ˆ a k
+ (k∧ek )exp(-i k⋅x)]  

 
 Take average over base state |nk> one gets the result: 
 
  εk =(1/2)

! 

dV

cavity

"  <nk|(ε0|

! 

ˆ E 
k
|2+µ0|

! 

ˆ B 
k
|2)|nk> = 

  (nk+1/2)  

! 

hωk  (5.3.10) 
 
The radiation Hamiltonian can be writtena as 
 
  

! 

ˆ H 
R

= 

! 

dV "
o

ˆ E T
2+ 1/µ

o( ) ˆ B 
2( )#  (5.3.11) 

 
This closes a connection loop between Fock photon view and classical form for the 
energy. The result is important because for particular photon quantum states one 
can find the classical Maxwell equation for the energy. In simple words, classical 
behavior is expressing special quantum states where the photon number density is 
very large (see below). 

Beyond all this tingle-tangle with formalisms, there is an important practical 
result: If, for a given process at a Fence, a photon is, say absorbed, the spin must be 
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compensated due to angular momentum conservation. The transition in the 
absorber must be associated to an increase of angular momentum by one unit. This 
put forward a rule of selection. A change from an S-state must end up in a P-state; 
similarly, a P-state into a D-state; and so on and so forth. For emission of a photon, 
the opposite rule holds: P-state to S-state; D-state to P. These rules follow from 
angular momentum conservation. 

The import of EM quantum states resides in their ability to yield values to the 
operators such as linear momentum, angular momentum, energy, electric and 
magnetic fields. We move on to examining some quantum states of interest. 

 
 
5.4. Basis functions 
 

Let us now construct the quantum physical space where the operators defined 
above must operate. The generic component, 

! 

ˆ a j
+

! 

ˆ a j, has no dimension; Planck’s 
constant permits introducing specific dimensions as it can be seen above. The 
space where these operators would act is the abstract Fock space. When we move 
on to the Fence, the base states will be referring to energy quanta associated to 
specific quantum base states. To construct quantum states there is need for a 
complete set of base states. We follow the algebraic treatment of the quantum 
harmonic oscillator using ladder operators. Because the field operators are all 
frequency uncoupled, consider each oscillator independently; drop thence the index 
j for simplicity (note, we can put it back if necessary), the Hamiltonian for an 
oscillator of frequency ω = ck is given by: 

 
  

! 

ˆ 
H ho = (  

! 

hck )(

! 

ˆ a 
+

! 

ˆ a 
  + 1/ 2)  =  

 (  

! 

h  ω )(

! 

ˆ a 
+

! 

ˆ a 
  + 1/ 2) (5.4.1) 

 
The operator nature of the field magnitudes is located at the level of 
creation/annihilation operators; to alleviate notation we use same global symbols 
for t-EM fields. This equation stands for a generic monochromatic model system. 

The energy associated to a vacuum state is <0|

! 

ˆ 
H ho|0> that equals to (  

! 

hω)/2. 
Yet, at the EM field there is no energy that can be traded. This subtlety should be 
kept in mind. 

 
 

5.4.1. Fock space  
 
As we have already hinted at in Chapter 3 (Sect.3.10) the number n of quanta in the 
field is one variable of interest; let |n> be a base state for n quanta of given 
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frequency; for the time being instead of nω we use n, and understand that n-quanta 
can be exchanged, each of energy (  

! 

hω). This type of base set is known as a Fock 
space. 

The annihilation operator 

! 

ˆ a 
 acting on |n> relates to a state proportional to |n-1>; 

it is common to say: generates thereby implying objects. If now we let 

! 

ˆ a 
+ to act on 

|n-1> by definition it will relate (or create a quanta so that 

! 

ˆ a 
+|n-1> would be 

proportional) to |n>.  
What is the eigenvalue of the product operator 

! 

ˆ a 
+

! 

ˆ a  acting on |n>? From the 
preceding analysis we got the information 

! 

ˆ a 
+

! 

ˆ a  |n> = Cn |n>. If |n> is an 
eigenvector of 

! 

ˆ a 
+

! 

ˆ a  then Cn = n. In general, 
 

 <n|

! 

ˆ a 
+

! 

ˆ a  |n> = n <n|n>   ⇒ n ≥ 0.  (5.4.1.1) 
 
This n positive-ness is an important property of the harmonic oscillator. It 
introduces the zero-point energy, n=0 in eq. (5.4.1). Energy differences are 
reckoned from this point upwards. 

Now, because 
 [

! 

ˆ a 
+

! 

ˆ a 
 , 

! 

ˆ a ] = -

! 

ˆ a  (5.4.1.2) 
 
You can show that 
 

! 

ˆ a 
+

! 

ˆ a 
 (

! 

ˆ a |n>) = 

! 

ˆ a 

! 

ˆ a 
+

! 

ˆ a 
 |n> - 

! 

ˆ a |n> =  
 

! 

ˆ a  n |n> -

! 

ˆ a |n> = (n-1) (

! 

ˆ a |n>) (5.4.1.3) 
 
This procedure shows that (

! 

ˆ a |n>) is proportional to an eigenvector with eigenvalue 
(n-1), or equivalently that the operator

! 

ˆ a  shift down by one quanta and relates to a 
system having amplitude for a base state |n-1>; i.e. annihilates a quantum, that is a 
colloquial way to say it.  

If we keep applying 

! 

ˆ a  to |n> successively, eventually a negative value is 
attained. But from eq.(5.3.11) negative values are forbidden. Then there must be an 
integer m for which 

! 

ˆ a 
m|n> does not vanish while 

! 

ˆ a 
m+1|n> does: 

 
 

! 

ˆ a 
+

! 

ˆ a 
 (

! 

ˆ a 
m |n>) = (n-m) (

! 

ˆ a 
m |n>) (5.4.1.4) 

 
So that n=m leading to 

! 

ˆ a 
n |n> = 0. In other words, the eigenvalues of 

! 

ˆ a 
+

! 

ˆ a  are all 
positive integers. The lowest one being n=0 that corresponds to the base state 
defined by 
 

! 

ˆ a  |0 >  = 

! 

ˆ a  |vacuum > =  0  (5.4.1.5) 
 
The absence of excitations in the field that could eventually be traded with another 
system is a realization of the vacuum state |0 > or |vacuum >. Thus, fulfillment of 
eq. (5.4.1.5) is logically consistent. 
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From this base state -the vacuum (of actual excitations)- any other base state 
can be generated by applying 

! 

ˆ a 
+ a sufficient number of times. To show this let us 

first give the normalized vectors obtained from applying creation and annihilation 
operators on an arbitrary base state |n>: 

 
 

! 

ˆ a 
+ |n> = √(n+1) |n+1>  and  

 

! 

ˆ a  |n> = √(n) |n-1> (5.4.1.6) 
 
The number operator 

! 

ˆ N  = 

! 

ˆ a 
+

! 

ˆ a  acts as follows: 
  
 

! 

ˆ N  |n> = 

! 

ˆ a 
+ (

! 

ˆ a  |n>) = 

! 

ˆ a 
+ √(n) |n-1> =   

 √(n) (

! 

ˆ a 
+|n-1>) =  √(n) (√(n) |n>) = n |n>  (5.4.1.7) 

 
The Hamiltonian reads as:  
  

! 

ˆ 
H ho =  (  

! 

h  ω )( 

! 

ˆ N  + 1/ 2)  (5.4.1.8) 
 
Now, it can be shown that the base state |n> can be obtained by successive 
application of the creation operator: 
 
 (1/√n!) (

! 

ˆ a 
+ )n |0>  = |n> (5.4.1.9) 

 
In one word, the creation/annihilation operators open a simple way to construct 
base functions referring to varied number of excitations for a given frequency. Do 
not believe that by playing with these operators you will be creating or annihilating 
energy in a physical field! This is an abstract Fock space that is used in many 
different physical chemical contexts. 
 

 

E&E-5.4-1 Field magnitudes for defined quantum states 

At this point it is important to realize the difference between general field operators and the 
physical magnitudes related to them. The operators cover all possible levels that might be 
found and expressed in the spectra of particular material systems. Physical states are 
specific to given systems; you can prepare them in a laboratory. The energy of a particular 
quantum state (linear superposition) is the average value of the Hamiltonian operator with 
respect to that physical state. For example, if we prepare a quantum state with the energy 
equivalent to one photon per cubic centimeter it does not mean that all amplitudes of the 
row-vector ought to be zero except that one the system was prepared. See below for further 
discussions (See also Chapter 9). 
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5.4.2 Quantum physical states 
 

A simple didactic picture retains the amplitudes as the place where a physical 
state is controlled, e.g. let …+ Ck-1|k-1> + Ck|k>+…be the states where two Fock 
space basis will be involved in describing a given process. In the first step we have 
Ck-1=1 and Ck=0 after interaction we find Ck-1=0 and Ck=1. Thus, the EM got a 
photon. The process seen from the Fence is an emission from the material system 
coupled to the t-EM field. This is all there is.  A description using populations of 
the energy levels of the field modes may be obvious in this case, but in general, 
things are somewhat more complicated because mechanisms develop inside Hilbert 
or Fock space where we have the mathematical rules to operate. The point to retain 
is that the base states inform about the label of energy at disposal; it is a reckoning 
help. It is the particular quantum state that informs us about the material system 
under study. 

An arbitrary quantum state of the t-EM, say |Ξ>, is represented by a row vector 
of complex numbers: <n k|Ξ> : 

 
 |Ξ> = Σk <n k |Ξ> |nk > (5.4.2.1) 
 
The average energy for this state is given by <Ξ|

! 

ˆ 
H ho|Ξ>. Introducing the 

definitions given in eq.(5.1.19) and (5.4.2.1) we get: 
 
 <Ξ|

! 

ˆ 
H ho|Ξ> = <Ξ|Σj (  

! 

hωj)(

! 

ˆ a j
+

! 

ˆ a j
 +1/2)|Ξ> = 

 Σjkl<nl|Ξ>*<nk|Ξ>(  

! 

hω j) <nl|(

! 

ˆ a j
+

! 

ˆ a j
 +1/2)|nk> (5.4.2.2) 

 
For the constant term we have <nl|(1/2) |nk> = (1/2)δlk; for occupation number one 
gets: <nl|

! 

ˆ N j|nk >=nj <nl|nk> δjk, thus there are two Kronecker delta, δjk δnl nk 
eliminating two sum signs to get the average energy for the quantum state |Ξ> 
given by: 
 <Ξ|

! 

ˆ 
H EM |Ξ> = Σj |<nj|Ξ>|2 (  

! 

hω j) (n j+1/2) (5.4.2.3) 
 
The average energy depends upon the amplitudes that are different from zero in the 
quantum state via |<nj|Ξ>|2, the squared amplitudes and the energy that can be 
exchanged amounting to: n (  

! 

hω). 
 Take our little example above and call |Ξ1> the case for which Ck-1=1 and Ck=0 
and |Ξ2> for Ck-1=1 and Ck=0; all other modes have zero amplitudes. Thus,  
 
        <Ξ1|

! 

ˆ 
H EM|Ξ1> = (  

! 

hωk) (nk-1-1+1/2)| Ck-1|2 and  
   <Ξ2|

! 

ˆ 
H EM |Ξ2> = (  

! 

hωk) (nk-1+1/2)| Ck|2.  
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The difference in average energy <Ξ1|

! 

ˆ 
H EM |Ξ1>- <Ξ2|

! 

ˆ 
H EM |Ξ2>= -(  

! 

h  ω k ).  
The initial state lost one photon of energy (  

! 

hωk). Observe the sum in (5.4.2.3) 
is generic; for each frequency there is a Fock space implied. 

The zero-point energy cancels out when energy differences are calculated. Such 
is the case of all physical process involving the t-EM; there is an initial and a final 
state, even if the latter may be the same as the initial one. Of course, the operator 
form contains an infinite term for the simple reason we just pointed out above: the 
operators are there to represent all the possibilities a quantum material system may 
have. At the Fence you must respect energy conservation. 
 For a general quantum state, referring to 1-system, the amplitudes are not 
integers; 0 ≤ |<nj|Ξ>|2 ≤ 1. The use of a population picture is not adequate as the 
energy quanta would have to be divided in fractions |<nj|Ξ>|2 n j in contradiction 
with a plain (exchanged) particle picture. The energy would be “spread”, as it were, 
in the field, and it is only interaction with a material system that make energy 
exchange at the Fence to be in finite quanta. But, again, we are mixing the 
descriptive levels. The linear superposition |Ξ> is a coherent state in Hilbert or 
Fock space; at the Fence, the system is in an energy shell.  

An incoherent state will be a statistical ensemble of N copies, where for a base 
state that had non-zero amplitude in |Ξ> it must be unity; then there will be Nk 
elements of the ensemble that only have amplitude one for that case and 
statistically Nk/N → |<n k |Ξ>|2 when N→ ∞. The population picture is akin to this 
statistical view. 
  There are then two parts to the average energy, one determined by the quantum 
structure of the system, n times (  

! 

hω) or total energy that can be exchanged by 
quanta   

! 

hω, the other depends upon how do you prepare the system in the 
laboratory, that is the set of |<n|Ξ>| and phases. Remember that the quantum state 
is determined by laboratory preparations. If they are to be mapped on to Hilbert 
space then they have to be normalized to unity. 
 Let us calculate with eq.(5.4.2.2) the case where all amplitudes are zero except 
for the base state n=50. From |<n=50|Ξ>|2 = 1, the equation reduces to: (50 + 1/2) 
(  

! 

hω). Now, if a physical process leads to a new state, say n=40 (|<n=40|Ξ>|2 = 1) 
the energy exchanged  |(50+ 1/2) - (40+ 1/2)| equals 10 photons; the zero point 
energy is irrelevant for this count. 

The amplitudes indicate the possibility to measure a response from n-excitations 
Fock space base state. Let us take an illustration. Prepare the system in such a way 
we have <n|Ξ> that for n=20 is different from zero only. If you want to measure a 
response from the base state |n-1> there will be no intensity as its amplitude by 
construction is zero. 

The quantum state after interaction leading to 1-quanta “emission”, 

! 

ˆ a |Ξ> is: 
 

 

! 

ˆ a |Ξ> = Σn <n|Ξ> 

! 

ˆ a |n> = Σn √n <n|Ξ> |n-1>  (5.4.2.4) 
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The new quantum state, 

! 

ˆ a |Ξ>= |Ξ’>, can be expanded as in eq. (5.4.1.6). We can 
see that the following relation holds: <n-1|Ξ’> → √n <n|Ξ>.  

If a quantum state has been prepared in the laboratory to show a very high 
number of quantum excitations we can apply the annihilation operator m-times so 
that the sum in 

! 

ˆ a 
m|Ξ> will start at the term n-m: 

! 

ˆ a 
m|Ξ>= √m! |n-m> + √(m+1)! |n-

m+1>+ √(m+2)! |n-m+2>+…. For n-m=1, one can cast this sum into: 
 

 (1/√m!)(

! 

ˆ a )m |Ξ> = Σg=1 √g! <g+n-m|Ξ> |g+n-m>  
  (5.4.2.5) 
 
 
 
5.4.3. Quantum model for classical EM field  
 
We define now a classical-like t-EM field if for a typical number of quanta that are 
involved in a measurement of the field (say m excitations) the remaining t-EM 
field cannot be distinguished from the initial one. Observe that different subspaces 
may be identified with phase relations. The classic-like field must show random 
phases and the frequency range ought to be well defined. 
 Any standard t-EM detector device would detect the energy quanta by 
“destroying” them (actually, they can be scattered in direction differing from the 
one you put the detector). In this case let 
 
   (1/√m!)(

! 

ˆ a )m |Ξ> ~ |Ξ> for m<< N  (5.4.3.1) 
 
N is an average number over energy quanta in the t-EM field and m is the number 
of quanta required to excite the photo-detector, photo-multiplier, photographic 
plate or your eyes if working in the visible. 
 Remember that the geometric arrangement of detectors, sources and measured 
systems is located in real space. The direction of a photon beam is determined by 
the position of the source and the detector. The emission/absorption processes are 
local; this is what it makes the difference between the Fence and the abstract 
domains. 

So, we have both, a fully quantized field theory as well as Maxwell equations to 
handle problems related to energy exchange, interactions, etc. between 
electromagnetic systems. Before fully exploiting these concepts in a fully 
quantized scheme, we introduce new aspects of material systems where classical 
and quantum aspects of electrodynamics appear to be the adequate way to go. 
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5.4.4. Coherent photon states 
 
Consider an arbitrary quantum state given by the linear superposition over the 
number state basis (given frequency): 
 
  |A> = Σn <n|A> |n>  (5.4.4.1) 
 
Take a special quantum state that is eigenstate of the annihilation operator: 
 
  

! 

ˆ a  |α> = α | α >   (5.4.4.2) 
 
Recalling (5.4.1.9) we express the number eigenvectors as: (1/√n!) (

! 

ˆ a 
+ )n |0> and 

changing the label A by the complex number α one can obtain: 
 
  <n|α> = exp(-|α|2) αn/√n! (5.4.4.3) 
 
The coherent state |α> takes on the form: 
 
  |α> = Σn <n|α> |n> =  
  exp(-|α|2/2) Σn αn/√n! |n> (5.4.4.4) 
 

It is not difficult to check that (5.4.4.2) holds when one uses the expression 
above.  

The relative response towards a probe from root state |n> takes on the form: 
 

  |<n|α>|2 = exp(-|α|2) |α|2n/n! (5.4.4.5) 
 
This is Poisson distribution with mean value |α|2. 

By construction, the quantum state given by eq. (5.4.4.4) is an eigenstate of 

! 

ˆ a , 
(annihilation operator). Noting that exp(-α*

! 

ˆ a ) |0> = |0>, the coherent quantum 
state is written as: 

  |α> = exp(α

! 

ˆ a ) |0> exp(-|α|2/2)= 
   

! 

ˆ D (α)|0>  (5.4.4.6) 
 

The operator D(α) is given by: 
 
  

! 

ˆ D (α) = exp(-|α|2/2) exp(α

! 

ˆ a 
+) exp(-α*

! 

ˆ a ) = 
  exp(α

! 

ˆ a 
+- α*

! 

ˆ a )  (5.4.4.7) 
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The average energy associated to this k-mode coherent state obtains by using 
eq.(5.4.2.3) and (5.4.4.5): 
  <α|

! 

ˆ 
H EM|α>/(  

! 

hωk) = Σn exp(-|α|2)|α|2n/n! (n+1/2) = 
  Σn {exp(-<n>) <n>n/n!} (n+1/2) (5.4.4.8) 
 
The average photon number <n>= |α|2. This equation includes zero-point energy 
that can be substracted so that available energy in the field is reckoned, the result is 
ΔEEM(α)=Σn {exp(-<n>) <n>n/n!} n. 

Thus,  
  |<n|α>|2 = (1/n!) <n>n exp(-<n>) = p(n) (5.4.4.9) 
 

The response in intensity regime from the root state |n> is given by a Poisson 
distribution about a mean |α|2. It is then |α| that determines the physical problem by 
fixing the average photon number. 

For |α| ≤ 1, p(n) has a maximum at n=0. While for |α| > 1, p(n) shows a peak at 
n=|α|2. 

The complex number α can be written in terms of an amplitude and a phase: 
 
  α = |α| exp(iθ)  (5.4.4.10) 
 
This relationship will be useful in what follows. 
 
 

5.4.5. Squeezed photon states 
 
 Linear superposition states always show dispersion on conjugated non-commuting 
operators. In Chapter 3 we saw a typical example. Here, the electric field operator 
permits construct a pair of Hermitian non-commuting operators of interest when 
seeking to extract properties of photon quantum states. For the k-mode one has: 
 

  

! 

ˆ E (t) = iEω e [

! 

ˆ a  exp(-i νt) -

! 

ˆ a 
+ exp(i νt)] (5.4.5.1) 

 
Introduce Hermitian amplitude operators: 
 
  

! 

ˆ X 1 = (1/2) (

! 

ˆ a  + 

! 

ˆ a 
+)  (5.4.5.2) 

  

! 

ˆ X 2 = (1/2) (

! 

ˆ a  - 

! 

ˆ a 
+)  (5.4.5.3) 
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These two operators do not commute, 
 
  [

! 

ˆ X 1,

! 

ˆ X 2] = i/2  (5.4.5.4) 
 
And 
  

! 

ˆ E (t) = 2Eω e [

! 

ˆ X 1 cos νt +

! 

ˆ X 2 sin νt ] (5.4.5.5) 
 
The two Hermitian operators 

! 

ˆ X 1 and 

! 

ˆ X 2 are then quadratures amplitudes of the 
field having a phase difference π/2. It can be shown that  
 
  <Δ

! 

ˆ X 1 Δ

! 

ˆ X 2>  ≥ ¼  (5.4.5.6) 
 
A squeezed state of the radiation field obtains if (<Δ

! 

ˆ X i>)2 < ¼ for i=1,2. The 
quantum averages correspond to: 
 
  (<Δ

! 

ˆ X i>)2 = <α|

! 

ˆ X i
2|α> - (<α|

! 

ˆ X i|α>)2 (5.4.5.7) 
 
A straightforward calculation for the coherent state yield (<Δ

! 

ˆ X i>)2= ¼, i=1,2. 
A coherent state |α> has mean complex amplitude α, and it is a minimum-

uncertainty state for 

! 

ˆ X 1 and 

! 

ˆ X 2 with equal uncertainties in the two quadratures 
phases. 

Quantum states for which (<Δ

! 

ˆ X 1>)2 differs from (<Δ

! 

ˆ X 2>)2 while conserving 
invariant their product are known as squeezed states. This is another set of useful 
quantum states. Using unitary squeeze operators can generate them: 

 
  

! 

ˆ S (ζ) = exp(1/2 (ζ*

! 

ˆ a 
2 - ζ (

! 

ˆ a 
+)2)  

  ζ = r exp(iθ)  (5.4.5.8) 
 

As seen above, ζ is an arbitrary complex number. The squeezed state is label with 
α and r exp(iθ): | α, r exp(iθ)> or simply | α, ζ >. 
 Quadrature operators for the squeezed state read 

! 

ˆ Y 1 and 

! 

ˆ Y 2. They are related 
to 

! 

ˆ X 1 and 

! 

ˆ X 2 as follows: 
 
  <

! 

ˆ X 1 + i

! 

ˆ X 2> = <

! 

ˆ Y 1 + i

! 

ˆ Y 2> exp(iθ/2) = α (5.4.5.9) 
 
The difference between these two classes of states lies in the unequal uncertainties 
for 

! 

ˆ Y 1  and

! 

ˆ Y 2. In the complex-amplitude plane, a coherent-state error circle has 
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been squeezed into an error ellipse of the same area. The principal axes of the 
ellipse lie along 

! 

ˆ Y 1 and

! 

ˆ Y 2 axes, and the principal radii are Δ

! 

ˆ Y 1 and Δ

! 

ˆ Y 2. 
 
 
5.5. Quantum states: Gauges and phases 
 
At a Fence, quantum states are projected on configuration coordinate spaces. For 
charged systems the four potential A=(Ao,A1,A2,A3) under infinitesimal coordinate 
transformations  
  xµ → xµ + δfxµ ,  δfxµ = −fµ(x) 
  Aµ →   Aµ +  δf Aµ =  
   Aµ +  fα ∂αAµ + (∂µ fα )Aα  (6.5.1) 
 
These transformations  represent freedom of choice of coordinate system rather than 
redundancy in physical variables. For space coordinates: A(r)=(A1(r),A2(r),A3(r)). 
The time component is the Coulomb potential: Ao(r). In E&E-5.1-10 above gauge 
transformations were introduced, Cf. eq. (5.1-10.1).  
 
 A(r,t) → A(r,t) + ∇ Γ(r,t) 
 Ao(r,t) → Ao(r,t) – (1/c) ∂ Γ(r,t)/∂t 
 
A quantum state projected at a Fence on a coordinate system (configuration space) 
is transformed according to: 
 
 Ψ(r,t) → exp(ie Γ(r,t)/hc) Ψ’(r,t) (5.5.2) 
 
What the gauge is able to sense is presence of external interaction acting on the 
quantum state. Thus, consider a case where there is a splitting of the quantum state 
after interaction such as the gauge may take a positive sign when displacing to say 
uppwards (+Γ(r,t)), namely (exp(+ie Γ(r,t)/hc) ΨU(r,t) and negative when it is 
downward: (exp(-ie Γ(r,t)/hc) ΨD(r,t). The left/right quantum states can be bent so 
that at acommon space point one get the quantum mechanical superposition: 
 
  Φ(r,t) = exp(ieΓ(r,t)/hc) ΨU(r,t)+exp(-ieΓ(r,t)/hc)ΨD(r,t) 
     (5.5.3) 
The phase is no longer global, there is a relative phase (2eΓ(r,t)/hc) that is the 
cause for interference at the point where upper and lower states converge. 
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It is the quantum state Ψ(r,t) that is splitted to get Φ(r,t), the material system is 
not involved in the splitting. Whatever the path it could have taken the point is that 
it must be there at the interference zone. 

A conspicuous example is the Aharonov-Bohm effect. (See Webb et al. Phys. 
Rev.Lett. 54(1985) 2696 for an experimental proof.) 

 
 

5.6. At a Fence and beyond 
 
The interaction between a quantum state and a recording device due to elementary 
energy exchange would appear as an event (“click”). The event belongs to a world 
beyond the Fence. Interestingly, for quantum events, energy, linear and angular 
momentum are conserved. To an external observer the events will appear as 
localized in space-time. 
 The coefficients |ak|2 are real numbers; they define the classical physical state of 
the system and can be laboratory manipulated to the extent that the power put in 
the field is controlled. The energy EEM is in the field and the transport momentum 
PEM can change continuously due to changes of |ak|2.  

To turn a continuous view into a picture where exchange of energy takes on 
discrete amounts demands a change in the representation of the amplitudes {ak}. 
For now, there will be variable numbers of energy quanta that t-EM fields can 
exchange with matter fields, this requires a quantum physical approach where the 
number of excitations is a variable (degree of freedom).  

The picture where light was thought of in terms of particles transported in space 
is old: Newton’s picture dates back to 17th century; In our terms the problem is that 
there is no place where to put an I-frame origin propagating wit the speed of light 
and “riding” a photon. The particle picture is flawed because it is not possible to 
explain diffraction and interference phenomena. From Fresnel description of 
diffraction and interferences phenomena a wave perspective follows; the bottom 
line is continuous energy exchange between matter and light waves.  

But Planck tells us that exchanges are quantized which produces a puzzling 
situation. With hindsight, the quantum harmonic oscillator will help us with 
formalisms able to cope with this problem. 

Where does the quantum nature hide in Maxwell equations? Again, with 
hindsight one can see that the fundamental relationship between frequency, 
wavelength and speed of light hides a message, namely, ν λ = c. This equality can 
be decrypted with Planck’s constant h. For now multiplying by h both sides one 
gets (h ν) λ = hc and the energy quanta associated to the field appears neatly: h ν. 
Now we better use reciprocal space; (1/λ) is the wave number, and find that the 
energy quanta relate to the momentum (h/λ), namely, hν = c(h/λ). If we call 
k=(1/λ) and if you want to give it a direction in 3-space with a unit vector n then 
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we have k=(1/λ)n; the energy that can be exchanged is Maxwell relation written 
with a quantum decoder: Eν= kνhc. At the end we recover the fundamental 
“classical” relation: kν = ν/c: the momentum transported by the excitation being 
hkν or hν/c. In special relativity energy is proportional to momentum. These 
heuristic statements must be changed into a more formal approach that includes 
quantum physical aspects compatible with the framework developed so far. 
 


