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6. Basic Relativistic Quantum Mechanics  

 
 
 
 
 
 
 

Abstract quantum states projected in configuration space helps bridging the realm 
from pure mathematics to the applied one thereby allowing for introduction of 
inertial (Lorentz) frames.  

It is at a Fence that the theory of special relativity defines transformation 
properties between Lorentz frames. Communication protocols permit following 
events in an I-frame endowed with motion relative to the one singles out as 
reference; (it can be a laboratory frame for example). Invariance of four-vector 
norm to these transformations leads to mathematical expressions for rotations and 
translations in spacetime: Lorentz group. Yet, one may select a family of 
hyperplanes where all space coordinates are label with the same time parameter; 
this space is designated as space-time and corresponds to a “simultaneity” space. 
The configuration spaces used to project abstract quantum states are endowed 
with this property. From now on we leave abstract representation in the 
background and work with wave functions that are these projected quantum 
states. 

Now, one would like to introduce relative motion into the picture and 
calculate quantum states (changes) from the perspective of the I-frame where the 
experimentalist will fix its measuring devices to get signals from an internal 
quantum system in motion. Moreover, beyond the energy range where relativistic 
effects might be relevant, situations occur that are described with variable number 
of I-frames (particle numbers). The approach to simple 1-system introduced must 
be reformulated. 

So far we have emphasized aspects concerning symmetries and invariance 
based on space-time homogeneity and isotropy leading to quantum numbers 
characterizing base states. Now focus is on construction model Hamiltonian 
operators at the Fence; this means abstract operators projected in configuration 
space whenever such is the case.  

A key point is to keep clearly distinguishing the concepts of quantum states 
from basis sets. Once the latter base states are found, they remain fixed while it is 
the amplitude in front of them that can change when a quantum state evolves in 
time; quantum processes are hence just time evolution of the amplitudes. The 
material systems (1-systems) sustain quantum states; these latter are the 
mathematical elements of the theory not the material as such. This perspective fits 
better than the particle model. The eigen value equations to be constructed are 
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hence considered as ways-ans-means to get basis (eigen states) function for the 
material system that appears to be the case.  

For charged systems, a new symmetry emerges from charge conjugation that 
plays a fundamental role. Particle-base and antiparticle-base states can be 
accommodated in charge conjugated spaces although from a simplified view they 
come from different operators. Such is the magic of relativistic quantum 
mechanics. 

To get a step forward, a bit more about special relativity is given below so that 
some progress can be accomplished in the construction of relativistic operators. 
The relativistic models are given with the aim at illustrating the construction of 
model Hamiltonians. 

 
E&E-7-1-1. A little more on special relativity 
The standard axioms of SR are: 
 1) All inertial frames are equivalent (but some are more useful than others). 
 2) There exists a maximum speed signal, c, i.e. speed of light in vacuum. 
The point of most interest is that the speed of light is independent of the speed of both 
source and receptor I-frames. In this context, c is a universal constant; such as electron 
charge (e) is so far universal constant (see Berzi and Gorini, J.Math,Phys.10(1969)1518 
for an in depth analysis of the reciprocity principle). 

In a mechanical view, the energy E and frequency ν of an electromagnetic (EM) field 
are related; it is Planck constant (h) that bridges these quantities: hν is exchangeable 
energy at frequency ν between the EM field and a recorder (material system). Because 
νλ= c, a momentum can be defined by 1/λ = k and hk=p has momentum dimension; thus, 
in relativistic theory energy is proportional to a momentum: 
  E = hν = hc/λ = p c   (6.1) 
λ gives an idea of extension; it is a characteristic wave concept in optics. Observe then 
that the higher energy (hν) you put in the EM field the smaller must be its wave length (λ) 
in order to keep the fundamental relationship: ν λ = c. 

The special case of an inertial rest frame with a mass M at its origin show a four-
momentum pµ = (Mc,0,0,0); i.e. linear momentum   

! 

r 
p =0. For an isolated I-frame there is 

no way to know its state of motion from within. This is a typical fence device. 
So far we have considered rotation invariances in 3-space. In four-space, boosters are 

rotations of time-space planes. Boosters and 3-space rotations form Lorentz homogeneous 
rotation group; inclusion of origin translations (a) form the inhomogeneous Poincaré 
group of transformations. 
  -Translations: U(a,1) = exp(i P⋅a) (6.2) 
  -Rotations: U(0,Λ) = exp(iMµν Λmn) (6.3) 
The important things here are the commutation relations because we can distinguish the 
angular momentum vector, J = (M32,M13,M21) and a second vector N=(M01,M02,M03) 
standing for the boosts (relative velocities). These vectors permit defining a new vector 
w: 
  w = Po J - P⋅N   
  wo = P⋅J  (6.4) 
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The fundamental invariants (Casimir operators) are:  
  P2 = PmPm    
  w2 = wmwm   (6.5) 
Angular momentum and translations lead to conserved quantities, boosts are not 
conserved that is the reason why they do not provide with quantum labels for base 
functions. 

The eigen values of P2 and w2 serve to classify the irreducible representations of the 
Poincaré group. With c=1: 

 
  1a) P2 = M2 > 0 and Po > 0 ;  
  1b) P2 = M2 > 0 and Po < 0  (6.6) 
  2a) P2 = 0  and Po > 0 ;  
  2b) P2 =  0 and Po < 0  (6.7) 
 

The case 1) with M ≠ 0 can be transformed to a Lorentz frame where three-
momentum   

! 

r 
p =0; the material system is said to be at rest in this I-frame. In this rest frame 

the eigen values of Pm are pm = (M,0,0,0) and 
 

  p2 = pmpm =M2  
   -w2 = wo

2
  +   

! 

r 
w 
2 = po

2 J2 = M2 s(s+1) (6.8) 
 
The eigen values of J2 in the rest frame are just the value of the total intrinsic 
angular momentum (spin) of the material system, i.e. s(s+1). 
 

From the above presentation, it follows an important result: in relativistic 
physics massive systems can be classified according to their mass and spin. 

A booster transformation is a communication protocol to get coordinates 
equivalent in two I-frames that are in relative uniform motion. There are no 
accelerations involved.  

Now, remember that a quantum state in abstract Hilbert space is independent 
from the I-frame we select to project it. Thus, the wave function is the same for 
both frames if we assume the same quantum state is being represented either with 
configuration coordinates in one of them, say {q}, or {q'} in the other. The 
communication protocol for coordinates is the one obtained from relevant LTs. 

 
 
E&E-7-2-1 More on special relativity 
The abstract quantum state is invariant, by definition, to LTs. However, the projection of 
this state in the inertial frame coordinates, i.e. a wave function, would look differently if 
we use two or several frames related by LTs.  
In what follows, for the sake of simplicity, we use a unique, privileged, frame wherefrom 
the communication protocols are applied (LTs). In the privileged frame only the speed of 
LTs frames can be sensed. It remains to ensure that the form of the time evolution 
equations is invariant. 
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Let us now portray Hamiltonian operators for massive systems with spin s=0 
and s=1/2, respectively. They would lead to the Klein-Gordon-Schrödinger 
equation, or KGS for short, and for s=1/2 to the famous Dirac equation. In the 
standard literature, these equations are taken to describe relativistic particles. In 
our approach, the equations would permit to calculate complete base set functions 
in rigged Hilbert space sustained by relativistic material systems. Thus, albeit 
negative energy states are problematic in the particle view, here because the sign 
plays the role of a label, the energy is positive always; we will examine some 
aspects of this problem to help set up the relativistic computer schemes. Once 
again, the situation brings us to the fence between Hilbert and real space 
representations. 

The presentation of equations is fairly heuristic. 
 

 
6.1. Klein-Gordon-Schrödinger equation  
 
Quantum states are sustained by material systems. While the formalism is 
identical to the standard one used in Relativistic Quantum Mechanics, the particle 
view is eradicated; focus is put on base states required to describe quantum states 
of systems commonly described as particles that are referred to as 1-systems. This 
elimination avoids long discussions found in standard literature on “negative 
energy” states without loses of rigor. A reader not familiar with the subject may 
take the opportunity to see that it is not as dreadful as one would imagine. 

In abstract space, the form of Schrödinger time dependent equation follows 
from a unitary time evolution operator and continuity conditions (topology). The 
space part representation is required to construct mappings bridging abstract 
Hilbert space to projected configuration space, the wave functions. To this end 
the introduction of an I-frame is essential. From momentum four vector for a 
material system having total mass M, the scalar product  

 
  (E/c, p1, p2, p3)• [E/c, -p1, -p2, -p3]  
 

is equated to the invariant (scalar) product M2c2. This is the equation put up by 
Einstein (1905). The problem now is to get a model Hamiltonian.  

From equation (3.2.33) let us take the momentum operator 

! 

ˆ p  and energy 
operator derived from eq.(1.3.1.7), namely, 

! 

ˆ 
E  = i  

! 

h  ∂ /∂t and replace the classical 
physics symbols. A model four-momentum operator obtains: 

 
  (E/c -p1, -p2, -p3) → (

! 

ˆ 
E /c, -

! 

ˆ p 1, -

! 

ˆ p 2, -

! 

ˆ p 3) (6.1.1) 
 
Constructs the formally invariant scalar product with operator symbols:  
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   (

! 

ˆ 
E /c, -

! 

ˆ p 1, -

! 

ˆ p 2, -

! 

ˆ p 3) • [

! 

ˆ 
E /c, 

! 

ˆ p 1, 

! 

ˆ p 2, 

! 

ˆ p 3] =  
   (

! 

ˆ 
E /c)2 - 

! 

ˆ p 1
2 - 

! 

ˆ p 2
2 - 

! 

ˆ p 3
2  

 
Note that the scalar product and scalars (numbers) are invariant to Lorentz 
transformations. Now, subtracts the scalar M2c2 and apply the resulting operator 
to the scalar function ΨM(q,t). We get a differential equation: 
 
  {∂2/∂(ct)2 –{(∂2/∂q1

2 +∂2/∂q2
2 +∂2/∂q3

2 ) + 
    M2c2/  

! 

h
2 }ΨM(q,t) = 0 (6.1.2) 

 
This is the scalar Klein-Gordon equation initially discovered by Schrödinger.  

Here comes a key issue: ΨM(q,t) is a mathematical function that should satisfy 
the differential equation and boundary conditions one may endow eq.(6.1.2) with. 
If you come from the other side of the Fence, it is a supplementary hypothesis 
that such function would correspond to a wave function, namely, a quantum state 
projected in coordinate q. 

Once the hypothesis is retained, this equation as it is written above is used to 
describe quantum states of a system with both spin and charge zero. This 
differential equation leads to a calculation of a base set. Quantum states are then 
linear superpositions over such base states. These quantum states are sustained by 
the material system to the extent its “materiality” appears in the factor M2c2/  

! 

h
2. 

For charged system with spin-zero, base states interaction with the 
electromagnetic field is incorporated via the minimal substitution: pµ→ pµ-
(e/c)Aµ(q). The component A0(q) is a longitudinal field, while A1(q), A2(q) and 
A3(q) are the components of the transverse electromagnetic field (Cf.Chapt.6); 
this potential is taken as an external potential to the free particle-state system. 

The mass M is indicated as a label to the function. The constants related to 
real world are gathered in the factor M2c2/  

! 

h
2; this factor has dimension of an 

inverse of length square, i.e. k2 where k is a vector in reciprocal space.  
The set of plane waves ΨM,p(q,t) = C exp(i(p.q-Et)/  

! 

h) fulfill eq.(6.1.2); 
replacing it there one gets the relativistic energy expression: 
 
  (E/c)2-p.p = M2c2 or  E/c = ±√(M2c2+p2) (6.1.3) 
 
Here pops up the surprise because E/c coincides with the classical mechanics 
expression for the relativistic energy. The novelty is in the sign of the energy for 
there seem to be base states with positive and negative energies. Historically, 
there was a problem because the functions ΨM,p(q,t) were endowed with a particle 
interpretation, and massive free particles with negative energies was unheard of; 
nowadays this is still a non-sense. 
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The parameter E must be taken as an eigen label (value) of the time-
independent KGS equation; it cannot represent energy at Fence because the 
relationship E=Mc2 cannot be negative unless the mass is negative which is not 
an acceptable statement. This double meaning can be easily seen from a 
perspective of quantum states description: the parameter E used to separate time 
from space part is a label that may have the dimension of frequency or energy if 
we introduce Planck constant. As a label we write: 

 
  En(λ) =E± = λ± po  
  po = +√( M2c4 + p2 c2) >0 (6.1.4) 
 
For base states to be assigned negative or positive energy labels does not make 
big fuzz. Yet, the Hamiltonian appears to be non-bounded from below. For 
charged systems this puzzle was solved once charge conjugated states were used 
to suggest existence of a material system with equal mass and spin but different 
charge and finally were experimentally detected: the so called anti-particles. For 
uncharged systems, the particle- and antiparticle-states coincide.  

The interesting thing for charged systems, as already noted, is the existence of 
a new symmetry: charge conjugation. This new symmetry allows Klein-Gordon-
Schrödinger (KGS) equation to include both types of base states just ordering 
with an energy-label into positive and negative label states. It is the product 
energy by times (E⋅t) that matters.  

Following the brilliant idea of Wheeler, properly formulated by Feynman in 
quantum electrodynamics tells that “negative energy” states represent the states 
of electrons moving backwards in time. Thus, reversing the direction of proper 
time amounts to the same as reversing the sign of the charge so that the electron 
state moving backward in time would look like a positron state moving forward 
in time (Feynman, Quantum Electrodynamics; page 68). 

A negative sign can conventionally be assigned to the direction of time flow 
that would be opposite to standard one: base states propagating from "future" to 
"past". Propagation in the negative time direction would have the same state 
energy as those propagating in the positive direction. The relativistic equation 
(6.1.2) hides base states that can also incorporate zero charge states. We leave 
these matters now and focus attention on the non-relativistic limit of this 
equation.  

To get the non-relativistic limit for the scalar KGS equation the energy written 
as  

  po = Mc2 (√(1+ p2/M2c2) ≈  Mc2 (1+ p2/2M2c2-…),  
 

and taken as a label in absolute value one gets  
 
  |E| ≈ Mc2 + p2/2M –O(1/c2)…).  
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If we take away the rest mass energy in this expression we recover the classical 
mechanical kinetic energy of a material system: p2/2M. A transformation of the 
wave function is required to accomplish the change. The base function is written 
as follows: 
  ΨM(q,t) = Φ(q,t) exp(-i Mc2t/  

! 

h
2 ) (6.1.5) 

 
Most of the total mass M is twisted away from the base function Φ(q,t) and 
basically taken up by the phase factor. Introducing eq.(6.1.5) into eq.(6.1.2) we 
come, after some algebra, to eq.(6.1.6) 
 
  i  

! 

h  ∂ Φ(q,t)/∂t =  
  -(  

! 

h
2/2M)( ∂2/∂q1

2 +∂2/∂q2
2 +∂2/∂q3

2 ) Φ(q,t) = 
   

! 

ˆ 
H (

! 

ˆ q )Φ(q,t)  (6.1.6) 
 
This is the non-relativistic time-dependent Schrödinger equation. The equation 
yields a model Hamiltonian for eq.(1.3.1.1). There is a term containing the second 
derivative of time is affected by a 1/c factor (not shown); the non-relativistic case 
consists in taking c→∞ limit and, consequently the second time derivative 
vanishes. 

Thus, a dynamic scheme includes a model of the Hamiltonian, i.e.: 
 

 

! 

ˆ 
H  → 

! 

ˆ 
H (

! 

ˆ q )free =  
 -(  

! 

h
2/2M)( ∂2/∂q1

2 +∂2/∂q2
2 +∂2/∂q3

2 )  (6.1.7) 
 
This operator permits calculating base states once relevant boundary conditions 
are given to supplement eq.(6.1.6); periodic boundary conditions (PBC) are 
commonly used in this context. For a cube of length L on each side one gets: 
 
 pn = (2π  

! 

h /L)  (n1, n2,n3) 
 ni =0,±1,±2,…  (6.1.8) 
 
The norm is chosen as N=(2EnL3)-1/2, then the two type of solutions φ(+) and φ(-) 
are ortho-normal: 
 
 φn

(±)(q,t) = N exp(i(pn.q-En(λ) t)/  

! 

h ) (6.1.9) 
 
The energy parameter is quantized:  
 
  En(λ)= λ √( M2c2 + p2) with λ = ±1.  
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For us, En(λ) is a label for base states and the quantum state related to this 
equation should include a sum over positive and negative label base states.   

If we take Ao= 0, the transverse EM will be the mechanism prompting for 
energy exchange between the material system and the EM field; equation (6.1.9) 
may be seen as representing base states for positive and charge conjugated 
negative charges for λ = ±1. Thus, φn

(-)(q,t) specifies a base state for negative 
charge system and φn

(+)(q,t) would stand for base states of the positive charge, 
“antiparticle”. The energy for both base states is positive and equals to: 

 
  | En(λ)|= +√( M2c2 + p2).  
 
A general quantum state will be a specific linear superposition among the 

infinite set: 
  Ψ(q,t) = 
  Σn {Cn(Ψ) φn

(+)(q,t) + Dn(Ψ) φn
(-)(q,t)}  (6.1.10) 

 
The generic quantum state given by eq.(6.1.10) may represent different varieties 
of particle-state/anti-particle-state situations. Because the base states are always 
there, the situation here does not involve “physical” particles being created or 
annihilated, but changes in the quantum state reflected by the amplitudes.  

It may well happen that the complete set of amplitudes {Cν(Ψ)} is zero at all 
times so that any experiment designed to probe the response of say positive 
energy-label states will yield zero relative amplitude. Thus, it is sufficient that at 
least one amplitude from Dn(Ψ)-set be non-zero for the experiment probing 
negative label states will yield a finite response.  

Pair annihilation yields zero amplitudes for both {Cν(Ψ)} and {Dν(Ψ)} the 
energy must be put into the EM field. Note that this way of representing quantum 
states of different material systems can be done because there exists a symmetry 
relating both Hamiltonians, i.e. charge conjugation. Due to charge conjugation 
symmetry, Hilbert space is the sum of base states for particle- and antiparticle-
states. The representation of arbitrary quantum states must include positive and 
negative base states always. 

The scalar Klein-Gordon equation actually describes spin-zero systems. The 
real interest (for us)   was to find out the form of a non-relativistic Hamiltonian 
equivalent to the one used by Schrödinger. The result shows consistency. But the 
spectra of electron states in an external Coulomb field led Schrödinger to results 
at variance with experiment. The non-relativistic limit equation yields the gross 
elements of hydrogen atom spectrum only. 

The problem is that electron states that must be described with spin 1/2 base 
states do not fit KGS equation when adapted to describe the spectrum of the 
hydrogen-like systems. Here we focus attention on Dirac equation where the base 
states are column vectors in four dimensions named 4- base-vectors. These 4-b-
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vectors are multiplied by scalar function that fulfill KGS equations thus the 
interest to look up first at least to some aspects of this equation. 
 
 
6.2. Dirac equation 
 
The natural step now is to seek after a relativistic equation for states of spin 1/2. 
This was not the way followed by the pioneers but is just a shortcut through a 
forest. A relativistic invariant equation has symmetries built in that in case of 
charged systems lead to quantum numbers labeling “particle” and “antiparticle 
states. While quantum base states appear to be related by a charge conjugation 
operation, in the laboratory they correspond to different material systems with 
different physical properties. Do not forget this point. 

Spin 1/2 functions have dimension two (Cf.Sect.3.5.2 where 2-spinors are 
examined) and if the base functions for this equation would somehow 
accommodate charge conjugated states, thus spin dimension may require at least 
of 4-component base:  

  Ψ = [Ψ1 Ψ2 Ψ3 Ψ4] = (Ψ1 Ψ2 Ψ3 Ψ4)t.  
Note that KGS equation has square momentum dimensions, while Dirac 

wanted to have an equation linear in this dimension. The symbol Ψ is a 4x1 
matrix (column vector). We need an operator to act on this object that is not 
going to reduce the dimensions of the basic base vector. Pick up (

! 

ˆ E /c, -

! 

ˆ p 1, -

! 

ˆ p 2, 
-

! 

ˆ p 3) and a vector of fixed 4x4 matrix elements (α0 α1 α2 α3). The scalar product 
would represent a momentum operator appropriate for this space:  

 
  (α0 α1 α2 α3) [

! 

ˆ 
E /c, 

! 

ˆ p 1, 

! 

ˆ p 2, 

! 

ˆ p 3]  = 
   αo

! 

ˆ 
E /c + α1

! 

ˆ p 1 + α2

! 

ˆ p 2 +α3

! 

ˆ p 3. 
 
Each term, say α2

! 

ˆ p 2, is a 4x4 operator that can act on a 4-vector Ψ: (α2

! 

ˆ p 2)Ψ. 
The scalar product is Lorentz invariant; following a trick similar to KGS 
equation, complete the special relativity form with Mc2 α4; the matrix  α4, 
designated by β in the literature, is to be determined as well as (α1 α2 α3) = α . To 
alleviate notation, the circumflex over these and other matrix operators is to be 
understood; they represent fixed matrix operators anyway. Now multiply from the 
right with Ψ a 4-component vector to get: 
 
  ( αo

! 

ˆ 
E /c + α1

! 

ˆ p 1 + α2

! 

ˆ p 2 +α3

! 

ˆ p 3)Ψ =  
  Mc α4 Ψ (6.2.1) 
 



 QUANTUM PHYSICAL CHEMISTRY 
 
10 

This equation is just a form; it does not contain physics yet. Introducing the 
operators´ definitions as we did with KGS equation and taking αo as the unit 
matrix operator we get a definition of Dirac Hamiltonian: 
 
  i  

! 

h  ∂ Ψ /∂t =  
  {c  

! 

h /i (α1 ∂ /∂q1 + α2 ∂ /∂q2 + α3 ∂ /∂q3 ) + Mc2 α4}Ψ ≡ 
  

! 

ˆ H 
Dirac

Ψ (6.2.2) 
 
The term in round parenthesis can be written as -i c  

! 

h  α  ⋅∇ , and an inertial frame 
is involved once ∇  and i  

! 

h∂/∂t are introduced.  This equation has the form of 
Dirac relativistic equation; quantum states sustained by an isolated material 
system of mass M are determined with Hamiltonian: 
 
  

! 

ˆ H 
Dirac

 = -i c  

! 

h  α  ⋅∇   + β Mc2  (6.2.3) 
 
The energy operator is linear in the momentum if we divide by c above. The 
electromagnetic field shares this property in so far energy is proportional to the 
reciprocal space vector k: ω = |k| c. Multiply by   

! 

h  to get   

! 

hω equal to energy and 
  

! 

h |k| c. Observe that Planck constant (  

! 

h) and speed of light (c) turn on physical 
dimensions on to the abstract operators. The last term has the dimension of 
energy (Mc2) and dimension of c∇  is (1/time) that multiplied by   

! 

h  (energy x 
time) gives dimension of energy too. In Special Relativity theory use E/c= po = po 
as being the time-component of the momentum 4-vector (see eq.(6.1.4)). 

The relationships between matrices α1, α2, α3, α4 are derived by using an 
iterated eq. (6.2.2). Imposing fulfillment of a Klein-Gordon-Schrödinger equation 
for each component, the matrices α  and α4 must satisfy the relations 

 
  αi αj + αj αi

  = 2 gij 1  (6.2.4) 
  αi β + β αi  = 0   (6.2.5) 
  α4

2 = β2 = 1 (6.2.6) 
 
The metric matrix is defined as: g00 =1, g11 = g22 = g33 =-1, gij =0 (i≠j). A 
representation for these matrices obtain with the set of 2x2 Pauli spin matrices: 
 

  α1 =

! 

0 "
1

"
1

0

# 

$ 
% 
% 

& 

' 
( 
( 
 ;  α2 =  

! 

0 "
2

"
2

0

# 

$ 
% 
% 

& 

' 
( 
( 
 ;  

  α3 = 

! 

"
3

0

0 #"
3

$ 

% 
& 
& 

' 

( 
) 
) 
 ;  α4 = β = 

! 

1 0

0 "1

# 

$ 
% 
% 

& 

' 
( 
( 
  (6.2.7) 
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Note that upper or lower indexes for Pauli matrices are irrelevant:

! 

" k =

! 

" k. A 
simple transformation obtains with gamma matrices: γo = β and γk = β αk leading 
to a so-called covariant Dirac form: 
 
  (-i γµ ∂µ + M c/  

! 

h  ) Ψ = 0  (6.2.8) 
 
We suppress double underline to agree with standard notation. Also, set: 
 
  

! 

/ p  = γ . 

! 

ˆ p  = γµ 

! 

ˆ p µ =  γ0 

! 

ˆ p 0 −   

! 

r 
" .  

! 

r 
p   (6.2.9) 

 
Use short hand notation: 
    

! 

r 
" = (γ1,γ2,γ3) ;  

! 

r 
p  = (

! 

ˆ p 
1,

! 

ˆ p 
2,

! 

ˆ p 
3) ; γµ =gµν γ

ν  (6.2.10) 
 
The explicit representation of gamma matrices (with notation change to align our 
writing with standard use) is: 
 

  γ0 = 

! 

1 0

0 "1

# 

$ 
% 
% 

& 

' 
( 
( 
;  γk = β αk= 

! 

0 " k

#" k
0

$ 

% 
& 
& 

' 

( 
) 
) 
 ;  

  γ5 = i γ0 γ1 γ2γ3 = 

! 

0 1

1 0

" 

# 
$ 
$ 

% 

& 
' 
' 
   (6.2.11) 

 
Including the 4x4 unit matrix (that implicitly multiplies the term Mc/  

! 

h  in 
eq.(6.2.8)), the gamma set contains 6 matrices. 

In a particle-like perspective, H = γ0Μc/  

! 

h  = β Μc/  

! 

h  is the Hamiltonian in the 
rest frame. For c=1=  

! 

h  the numeric factor Mc/  

! 

h  has dimension of inverse length; 
in a more rigorous approach it is not possible to use the expression, 

! 

/ p  = γ . p = γµ 
pµ =  γ0 p0 −   

! 

r 
" .  

! 

r 
p , and simply put   

! 

r 
p  =  

! 

r 
0  to define the rest frame. From our point 

of view, to do this assignment is equivalent to define a mapping at the fence. The 
introduction of I-frames incorporates a concept of rest-frame, but if we had a 
quantum system in Hilbert space that we were projecting onto a frame, this 
quantum state cannot just vanish. The question is: what is a rest frame at the 
fence now?  

An answer can be cast in the following terms. The rotation group was used to 
set up base sets able to represent quantum state with the help of an I-frame 
independently of its linear state of motion. Boosts were not taken into account 
and, precisely, one thinks that a fence-rest-frame does the job of projecting that 
part of the abstract quantum state. Because Special Relativity tells us that massive 
(simple) systems can be classified according to their mass (M) and spin (S) we 
follow the dynamics with the Hamiltonian H = γ0Μ c/  

! 

h  constructed along semi-
classical lines. To make a long 
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 story short, examine the four independent base vectors: 

 u+ = 

! 

1

0

0

0

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 ; u- = 

! 

0

1

0

0

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 ; v+ = 

! 

0

0

1

0

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 ; v- = 

! 

0

0

0

1

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

  (6.2.12) 

 

They are eigenvectors to the vector spin operator   

! 

r 
"  defined by: 

 

   

! 

r 
"  = 

  

! 

r 
" 0

0
r 
" 

# 

$ 
% % 

& 

' 
( ( ;   

   

! 

r 
"  = β (α1, α2, α3) = (γ1, γ2, γ3) (6.2.13) 

 
Note that (1/2)  

! 

h    

! 

r 
"  is the spin angular momentum operator and what we have 

actually done is to determine the operator for any frame you might consider at 
rest. For example,  
 

    

! 

r 
" 1 u+ = σ1

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
;   

! 

r 
" 2 u+ = σ2 

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
 ;   

! 

r 
" 3 u+ = σ3 

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
 = 

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
  

    

! 

r 
" 1 u- = σ1 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
;   

! 

r 
" 2 u+ = σ2 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
 ;   

! 

r 
" 3 u+ = σ3 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
 = 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
 

   (6.2.14) 
In one word, the two-components of base 4-vectors of eq. (6.2.12) are renamed 
spinors and belong to Hilbert space. 

Pause at this point to introduce some language help. Observe the upper 
component of u+ and u- and for v+ and v- the lower components correspond to |↑> 
and |↓> (α and β) base functions of Section 3.5.2. The 4-spinor admits a 
partitioning into upper and lower 2-spinor components. This is a useful way to 
refer to the structure of these mathematical objects; we retain the following 
definitions:  

  u1 = 

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
 ; u2 = 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
 ; and v1 = 

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
 ; v2 = 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
  (6.2.15) 
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Now we move onto Dirac equation to obtain spinors for a general Lorentz frame. 
This is equivalent to find solutions to eq.(6.3.8). We basically put attention to 
boosters that will be the intermediate mappings between Hilbert space and real 
space. Taking the Hamiltonian operator eq. (6.2.3) and the 4-spinor with 
components u1 and u2 times the plane wave with positive energy label, i.e.  Ψ = 
(u1  u2)T  exp(i(p.q-E(λ) t)/  

! 

h) a system of equations follows: 
 E(λ) u1 =   

! 

r 
" . p u2 + M u1 (6.2.16a) 

 E(λ) u2 =   

! 

r 
" . p u1 + M u2 (6.2.16b) 

 
The determinant of this system of equation must equate to zero thereby leading to  
 
 E(λ)2 = p2+M2 (6.2.17) 
 
Define Ep = +√( p2+M2), then E(λ)= λ Ep and conventionally, equations (6.2.16) 
describe λ = +1 case that we name as positive energy-label solutions. For the 
negative energy-label solutions replace the 2-spinors u by those v and take λ =-1. 

From eq.(6.2.16b) with λ =+1, one obtains spinor u2 as a function of u1 as: 
 

 u2 =   

! 

r 
" . p u1/( Ep +M)  (6.2.18) 

 
The 4-spinor takes on the form 

 u+= N

  

! 

u1

  

r 
" . 

r 
p 

( Ep +M)
u1 

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

 (6.2.19a) 

 
The spinor is now normalized so that one can show: 
 

 u+= √((Ep+M)/2M) 

  

! 

u1

  

r 
" . 

r 
p 

( Ep +M)
u1 

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

   (6.2.19b) 

 
The normalization factor u†u including light velocity reads as Ep/Mc2 thus, if the 
kinetic energy is negligible in front of rest mass energy then Ep=Mc2 and the 
spinors are normalized to one: u†u = 1. The relativistic effect shows up neatly in 
the so called small component u2 =   

! 

r 
" . p u1/( Ep +M). The spinor for u- obtains by 

replacing u1 by u2 in the above equations. 
We have two interesting vector operators: spin operator 

! 

ˆ S =(1/2)  

! 

h  

! 

r 
"  and 

! 

ˆ p . 
One can form an invariant (scalar) operator measuring the direction of the spin 
and momentum vectors: This is the helicity operator 

! 

ˆ " S=

! 

ˆ S •

! 

ˆ p /|p|. This operator 
commutes with Dirac Hamiltonian and its eigen values can hence be used to label 
quantum base states.  
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For an electron base state in the direction i3, p=(0,0,p) the helicity operator in 
this direction looks as: 
 

! 

ˆ " S= 

! 

ˆ S 3 = (1/2)  

! 

h  

! 

1 0 0 0

0 "1 0 0

0 0 1 0

0 0 0 "1

# 

$ 

% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 

 (6.2.20) 

The eigen values are ±1/2. 
 The base states along i3 direction can be denoted as: 
 

 Ψp,λ,+1/2 = √((Ep+M)/2M)

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 

(
3
p

Mc + )E p

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 

  exp(i(px3 – λ Ept)/  

! 

h)  (6.2.21a) 
and 

 Ψp,λ,-1/2 = √((Ep+M)/2M)

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 

(
3
p

Mc + )E p

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

  

  exp(i(px3 – λ Ept)/  

! 

h) (6.2.21b) 
 
These equations complete the calculation of base states for a system having mass 
M, and spin 1/2.  

We discover a number of base states larger than those one would imagine for a 
simple particle system. In fact, this latter concept is not adequate to discuss 
Dirac’s equation. Positive and negative energy labels must now be correlated to 
laboratory (real) world. But we have not yet included the electric charge into this 
model and a first step is to do it.  
 
 
6.3. Hydrogen-like atoms: relativistic models 
 

Hydrogen-like systems are one-electron systems in an external potential 
generated by a charge Ze; examples are He+1, C+5 and U+91.  

An external spherically symmetric electrostatic potential Ao =V(r) can be a 
model to a number of situations found in real life. The case at hand is a nucleus 
with positive charge Ze located at the origin of the I-frame used to study free 
electron system; this is a semi-classic model because the nuclei’s quantum state 
(e.g., spin) are not taken into account, only the Coulomb field enters the picture. 
The units to be used now are e= c =   

! 

h  =1. The electromagnetic four vector looks 
like [V(r),0,0,0]. Dirac equation interacting with this field is: 
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  i ∂ψ/∂t = 

! 

ˆ H 
Dirac

ψ =  
 [-i α  ⋅∇   + β M + V(r) ] ψ.  (6.3.1a) 
 
We present the solutions to this equation following F.Gross (Relativistic 
Quantum Mechanics and Field Theory, Wiley, New York, 1993). The solutions 
can be cast in terms of spinors ψk

jm(r)exp(-iEt/  

! 

h) where the space part is given 
by: 

 ψk
jm(r) = 

! 

F
j

k
r( )"

jm

k
ˆ r ( )

iG
j

k
r( )"

jm

#k
ˆ r ( )

$ 

% 
& 
& 

' 

( 
) 
) 
 (6.3.2) 

 
The symbol

! 

"
jm

k
ˆ r ( ) is an angular function that in the spinor components is 

multiplied by different radial functions. The ansatz (6.3.2) is substituted in 
(6.3.1a) and two coupled equations follow: 
 
 (E 1– (M + V(r) )1 ) 

! 

F
j

k
r( )"

jm

k
ˆ r ( )=  

 - i σ  ⋅∇  

! 

iG
j

k
r( )"

jm

#k
ˆ r ( )   (6.3.1b) 

 
 (E 1+ (M - V(r) )1 )  

! 

iG
j

k
r( )"

jm

#k
ˆ r ( )=  

 - i σ  ⋅∇   

! 

F
j

k
r( )"

jm

k
ˆ r ( ) (6.3.1c) 

The angular function 

! 

"
jm

k
ˆ r ( )  is a linear superposition of spherical harmonics: 

 

 

! 

"
jm

k
ˆ r ( )  = -sgn(k) 

! 

k +
1

2
"m

2k +1

 

! 

1

0

" 

# 
$ 
$ 

% 

& 
' 
' 
 Yl,m-1/2 +  

  

! 

k +
1

2
+m

2k +1

 

! 

0

1

" 

# 
$ 
$ 

% 

& 
' 
' 
 Yl,m+1/2 = 

 -sgn(k) 

! 

k +
1

2
"m

2k +1

 αYl,m-1/2+

! 

k +
1

2
+m

2k +1

β Yl,m+1/2  (6.3.3) 

 
The 2-spinors α and β  are used . The quantum number k = ±(j+1/2) is positive if l 
= j+1/2 implying by this that k=l. For the negative case, if l=j-1/2 then k=-(l +1). 
The quantum numbers j and k determine the parity of the quantum base state. 
Thus, the correct choice of l, for a corresponding j can be seen determining the 
parity. 

To reduce Dirac equations one uses the identity with the unit vector

! 

ˆ r : 
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 -i σ  ⋅∇  = -i σ  ⋅ 

! 

ˆ r 
"

"r
 + i σ  ⋅

! 

ˆ r  σ  ⋅ 

! 

ˆ L 

r
 (6.3.4) 

 
The angular functions have the following properties: 
 
 σ  ⋅

! 

ˆ r  

! 

"
jm

k
ˆ r ( ) = - 

! 

"
jm

#k
ˆ r ( ) and  

 σ  ⋅ 

! 

ˆ L 

r
 

! 

"
jm

k
ˆ r ( ) = -(k+1)/r 

! 

"
jm

k
ˆ r ( ) (6.3.5) 

 
Thus, for eq.(6.3.3c) one gets for the off-diagonal terms 
 

 i c  

! 

h  σ  ⋅∇   

! 

F
j

k
r( )"

jm

k
ˆ r ( ) =  

  (-i σ  ⋅ 

! 

ˆ r 
"

"r
 + i σ  ⋅

! 

ˆ r  σ  ⋅ 

! 

ˆ L 

r
)

! 

F
j

k
r( )"

jm

k
ˆ r ( ) = 

  (-i σ  ⋅

! 

ˆ r  

! 

"
jm

k
ˆ r ( ) 

! 

"

"r

! 

F j

k
( r)  + 

  i σ  ⋅

! 

ˆ r ( σ  ⋅ 

! 

ˆ L 

r

! 

"
jm

k
ˆ r ( ) )  

! 

F j

k
( r) = 

  (+ i 

! 

"
jm

#k
ˆ r ( ) 

! 

"

"r

! 

F j

k
( r)   - i σ  ⋅

! 

ˆ r  (k+1)/r 

! 

"
jm

k
ˆ r ( )

! 

F j

k
( r) =  

  (

! 

"

"r

! 

F j

k
( r)   + (k+1)/r 

! 

F j

k
( r)) (i 

! 

"
jm

#k
ˆ r ( ))  (6.3.6) 

 

 (E 1+ ( Mc2 - V(r))1)  

! 

iG
j

k
r( )"

jm

#k
ˆ r ( ) -  

 (

! 

"

"r

! 

F j

k
( r) + (k+1)/r 

! 

F j

k
( r)) (i

! 

"
jm

#k
ˆ r ( ))   (6.3.1c’) 

 
The phase factor cancels out and multiplying by (

! 

"
jm

#k
ˆ r ( ))* the angular part is 

integrated out.  
 The calculations on eq.(6.3.1b) lead to the coupled differential equations: 
 

 [E - m-V(r)] 

! 

F
j

k
r( )   =  

 (-(1-k)/r ) 

! 

G
j

k
r( )   -  d

! 

G
j

k
r( ) /dr (6.3.7a) 
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 [E + m-V(r)] 

! 

G
j

k
r( )   =  

 ((1+k)/r ) 

! 

F
j

k
r( ) +  d

! 

F
j

k
r( ) /dr (6.3.7b) 

 
Solving these equations yields the complete spinor for positive energy label state. 

The solutions for hydrogen-like atoms are obtained once V(r) is replaced by -
Zα/r; where α is the fine structure constant. Power series are used to determine 
the r-dependence and N is an integer indicating where the series must be 
terminated to insure convergence. The energy levels are obtained as: 

 

 EN,k = m [ 1- 

! 

Z"( )2

N + k( )2+2N k
2

# Z"( )2 # k( )
]1/2  (6.3.8) 

 
Because |k| = j+1/2 and there is no solution for N=0 & k>0, it is convenient to 
introduce a new quantum number n as follows: 
 
 n= N + |k| ≥ 1   &  -n ≤ k ≤ n (6.3.9) 
 
This quantum number coincides with the familiar non-relativistic radial quantum 
number. Using n and |k| in terms of j, the energy levels can be written 
 

 Enj = m

! 

1"
Z#( )2

n
2
+2 n " j +1/2( )( ) j +1/2( )

2" Z#( )
2" j +1/2( )[ ]

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

 (6.3.10)   

 
This is the exact expression for the energy eigen values that depend only on two 
quantum numbers for Dirac equation (6.3.1) in the spherical symmetric field V(r) 
= -Zα/r. Take Z=1 and we get the eigen values for the hydrogen atom. 

An expansion of the square root leads to: 
 

 Enj  - m ≈ -m (Zα)2/2n2 –  
 m (Zα)4/2n4 

! 

n

j +1/2
" 3/4

# 

$ 
% 
% 

& 

' 
( 
( 
 + O((Zα)6)   (6.3.11) 

 
The first term corresponds to Bohr theory; the expression includes fine structure 
results exactly.   

To get a counting of states based on standard orbital and spin angular 
momentum, let us introduce the spinors Wl m(+) and Wl m(-): 
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 Wl
m(+) =  

  

! 

l + m

2l +1

" 
# 

$ 
% 
Y l

m&1

l & m +1

2l +1

" 
# 

$ 
% 
Y l

m

' 

( 

) 
) 
) 
) 

* 

+ 

, 
, 
, 
, 

α ;  Wl
m(-) = 

  

! 

l " m +1

2l +1

# 
$ 

% 
& 
Y l

m"1

"
l + m

2l +1

# 
$ 

% 
& 
Y l

m

' 

( 

) 
) 
) 
) 

* 

+ 

, 
, 
, 
, 

β (6.3.12) 

 
These spinors satisfy the angular momentum equations:  

 
 

! 

ˆ J  2 Wl m(+) = j(j+1) Wl m(+);  j = l + 1/2 

 

! 

ˆ J 3  Wl m(+) = u Wl m(+); u = m-l+1/2 = m-1/2 
   (6.3.13) 
and 
 

! 

ˆ J  2 Wl m(-) = j(j+1) Wl m(-); j = l - 1/2 

 

! 

ˆ J 3  Wl m(-) = u Wl m(-); u= m-1/2  (6.3.14) 
 
Possible values for j and u are: j=1/2,3/2,…, u=-j,-j+1,…,j-1,j. The two possible 
ways to combine spin and orbital angular momenta are given by eqs.(6.3.13) and 
(6.3.14). 

There is some subtlety when counting possible values of u. In Wl m(+) the 
index m runs as usual from – l to + l except that it can also take the value l +1 
even if the spherical harmonic does not exists. But the amplitude for that 
component is l–m+1 so that we get zero while the other component is fine, 2l+1, 
the spherical harmonic being then Yl

l . Therefore Wl
l+1(+) is well defined. Thus, 

there are 2j+1 values for u equivalent to 2l+2 different values. For Wl
m(-) the 

index m goes from - l+1 up to l. The value m= –l is forbidden; similarly m= l+1. 
Thus the 2j+1 values are covered by 2l different values. 

Now count the total number of states for a given n is shown in eq.(6.3.6). The 
solutions to the differential equations put constraints to the N values. For N=0 we 
must have k<0. This means that only the value k=-(j+1/2) = -n is allowed and k=n 
is forbidden. On each level Enj there are 2(2j+1) = 4(j+1/2) = 4 |k| states that 
correspond to each value of |k|= j+1/2 = 1,2,…,n-1 and for |k|=n there are 2j+1= 
2(j+1/2)=2|k|=2n states. Adding all these states for a given quantum number n we 
get: 
 4 Σ|k|=1,n-1 |k| + 2n = 4 n(n-1)/2 + 2n = 2n2 states. 
  (6.3.15) 
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This is a classical result obtained from counting states derived from the total 
angular momentum.  

Dirac equation represents a tremendous achievement in the quest for 
understanding the behavior of material systems for which base states with half-
integer angular momentum are the building blocks. Yet, it is not a particle 
equation as initially thought. Furthermore, it is not a representation of a material 
system, it is rather a model of quantum states the system may show up at the 
Fence. There is a set of base spinors for the particle-state and another to the anti-
particle-state the complete Hilbert space is the direct sum.  

The base [Ψ1 Ψ2 Ψ3 Ψ4 Φ1 Φ2 Φ3 Φ4] has dimension eight and includes both 
material systems states. The 4-spinor [Ψ1 Ψ2 Ψ3 Ψ4.] stands for electrons, say, 
and [Φ1 Φ2 Φ3 Φ4] for positrons. A quantum state with amplitudes different from 
zero only in the particle-state zone would represent a quantum state for the 
electronic system. We are approaching difficulties in the sense that 
asymptotically there must be two I-frames describing the complex system. We 
realize that the level of description attained concerns the quantum states not the 
particles. 

For pair-production the amplitudes at the charge conjugated states are equal 
and different from zero. The relationships are those found in the relativistic 
theory with charge-conjugation symmetry.  

The elements of the base set are related by conjugation properties as discussed 
above. Of course, a 4-dimensional representation can be retained if the base set 
obtained by charge-conjugation is written as [Φ1 Φ2 Φ3 Φ4] with the standard 
rules relating to [Ψ1 Ψ2 Ψ3 Ψ4.]. If you only work to obtaining base states for 
particle-states, there is no need for 8-dimensional vectors. The 4-spinor refers to 
only one energy-label case. In the example above [Ψ1 Ψ2 Ψ3 Ψ4] corresponds to 
positive energy-label while [Φ1 Φ2 Φ3 Φ4] refers to negative-energy-label, Cf. 
Eq.(6.2.12). Charge conjugation changes the sign of momentum p into –p and the 
energy label; the average values of the spin operators also change sign, s into -s. 
Now, after charge conjugation negative-label energy spectrum appears as a 
positive energy label spectrum. For the standard particle interpretation the 
negative energy solutions of the Dirac equation correspond to the charge-
conjugated solutions of positive energy, and vice versa. This symmetry grants a 
reduction of the 8-diemensional base down to 4-spinors. But do not forget that 
calculation of the time evolution operator will always require both subspaces. 
Otherwise, paradoxes will pop up. 

 
Dirac equation provides fundamental corrections in optical spectra. Also, this 

theory is the only one that describes correctly the angular momentum thereby 
providing an adequate nomenclature for magnetic states. In fact, as we saw 
above, it establishes the physical fact that neither the orbital nor spin angular 
momentum is conserved (constant of motion) and that only the total angular 
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momentum is conserved. The quantum number characterizing base states differ 
from the standard L-S coupling as well as from the one obtained from Pauli 
equation. 

Dirac equation does not yield an electron g-factor in full agreement with the 
experimentally determined one; it also fails to reproduce the splitting of 2p2s 
base states. These are effects related to missing couplings with the 
electromagnetic field. Today, they are described in the quantum electrodynamics 
(QED) framework. In the present context it means a coupling between the 
conjugated spaces via the quantized electromagnetic field.  
 
 
6.4. Non-relativistic limit: Pauli equation 
 
Consider the system in an I-frame such that the base spinor fulfils the equation: 

! 

ˆ p Ψ=0. This state is also known as “electron at rest”. The Dirac equation yields: 
 
 i  

! 

h  ∂ψ /∂t = β Mc2 ψ   (6.4.1) 
 
Only time dependence is apparent. The four independent base spinors below 
fulfill the eq. above: 
 
 u+ = ψ(1) = 

! 

1

0

0

0

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 exp(-iMc2t/  

! 

h);  

 u- = ψ(2) = 

! 

0

1

0

0

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 exp(-iMc2t/  

! 

h); 

  v+ = ψ(3)  = 

! 

0

0

1

0

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
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 exp(iMc2t/  

! 

h);  

 v- = ψ(4)  = 

! 

0

0

0

1

" 

# 

$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 

 exp(iMc2t/  

! 

h)   (6.4.2) 

 
These base spinors are equivalent to those found in eq. (6.2.12) and can be 

normalized if we use eqs.(6.2.21a and b) by putting there the momentum eigen 
value equal to zero. Note that this spinorial set satisfies Dirac equation with 
Hamiltonian (-ic  

! 

hα  ⋅∇  + βMc2 ) because in eqs. (6.4.2) has no space 
dependence: (-i c  

! 

h  α  ⋅∇   + β Mc2 )v+ = 0; the phrase itself, implying that spinors 
(6.4.2) fulfill Dirac equation, has no meaning. To make progress the spinor ψ 
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must have space dependence and the system must sense external electromagnetic 
fields. From our perspective, if there are relativistic quantum states, there must be 
available base states to construct a representation.  

The aim is to show that this equation reproduces the two-component Pauli 
equation. To do this one has to introduce the electromagnetic four potential 

 
 Aµ = (Ao(x),A1(x),A2(x),A3(x)) = 
  (Ao(x),A1(x),A2(x),A3(x))= (Ao(x), A(x)) (6.4.3) 
 
In classical electrodynamics (e/c)Aµ is the momentum“ transferred” to the field 
by the charge e so that the canonical momentum 

! 

ˆ p µ must be corrected to get 

! 

ˆ p µ - 
(e/c)Aµ ≡ 

! 

ˆ " µ, that is the kinetic momentum in the minimal coupling model (see 
Sect. 1.3). Now Dirac equation takes on the form: 
 
 i  

! 

h  ∂ψ /∂t =  
 ( cα  ⋅(

! 

ˆ p  -(e/c)A) + eAo 1 + β Mc2 )ψ   (6.4.4) 
 
The spinor ψ is partitioned into a pair of two-components spinors [

! 

˜ " ˜ # ] and 
inserted into the above equation. Because the rest energy is the largest energy in a 
non relativistic limit it is removed with the ansatz: 
  
 (

! 

˜ " ˜ # )T = (

! 

" # )T exp(-iMc2t/  

! 

h); 
 Eq.(6.4.4) takes on the form: 
 

  

! 

i
"

"t

! 

"

#

$ 

% 
& 
& 

' 

( 
) 
) 

 = c 

! 

ˆ " # ˆ $ %

ˆ " # ˆ $ &

' 

( 
) 
) 

* 
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, 
, 
 + eAo 

! 

"

#
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& 
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- 2 Mc2 

! 
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"
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% 
% 
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' 
( 
( 

  (6.4.5) 

 
If the potential term (eAo) is negligible in front of the rest mass energy, the 2-
spinor ξ can be cast in term of the 2-spinor 

! 

"  as follows: ξ = 

! 

ˆ " # ˆ $ 

2Mc
% . From this 

relation it can be seen that ξ is the small component and ∂ξ /∂t =0. The equation 
for the large component reads now: 
 

 i  

! 

h  ∂ϕ /∂t = 

! 

ˆ " # ˆ $ ( ) ˆ " # ˆ $ ( )
2M

 ϕ + eAo ϕ  (6.4.6) 

 
Introducing the definitions from electrodynamics of the magnetic and electric 
fields, B and E in terms of the four potential components one gets: B = curl A = 
∇∧A, and eq.(6.4.6) can be transformed into the 2-spinor Pauli equation: 
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 i  

! 

h  ∂ϕ /∂t =  
 {

! 

ˆ p 2/2M – (e/2Mc)(

! 

ˆ L  + 2

! 

ˆ S  )⋅ B + eAo} ϕ (6.4.7) 
 
The most striking result is that, in the non-relativistic limit, the Dirac equation 
transforms into the Pauli equation. This latter was already known to be adequate 
to describe spin 1/2 effects.  

For future reference we quote Pauli Hamiltonian below: 
 

 

! 

ˆ H Pauli =  ((

! 

ˆ p -(e/c)A)2/2M + eAo ) 1 –  
 (e/2Mc)σ⋅B + (e/4M2 c2)(1/r)(dAo/dr)) σ⋅L (6.4.8) 
 
1=σ2 is a 2D unit matrix. 

The Pauli Hamiltonian applies to electrically charged 2-spinors including 
interactions between the charges and a generic transverse electromagnetic field, a 
magnetic field via Pauli spin matrices and a coupling between orbital and spin 
angular momenta. 
 

 

6.5. Effective Hamiltonians  
 

The role played by the small component is crucial to get meaningful effective 
result. As a matter of fact, the partitioning can be made subtle to actually get an 
effective Hamiltonian containing most of the relativistic effects in atomic systems 
found before Dirac proposed his equation. The path to get such operator is not 
reproduced here, only the final result: 
 
 Heff = (

! 

ˆ p -(e/c)A)2/2M + eAo – (

! 

ˆ p )4/8M3c2– 
  (e/2Mc) σ  ⋅ B + e[∇2 Ao]/8M2 c2 +  
 (e/4M2 c2)(1/r)(dAo/dr)) σ  ⋅ L (6.5.1) 
 
Observe that the square bracket means that the operator ∇2 operates only within 
brackets. 

The terms incorporated by Heff were well known before the discovery of Dirac 
equation. The derivation from Dirac’s equation is to be regarded as a great 
success and confirmation that the Dirac equation does give a correct description 
of the interactions of spin 1/2 base states with an EM field. 
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6.5.1.Fine structure term: (

! 

ˆ p )4/8M3c2 
  

This is a relativistic correction to the kinetic energy. The correction stems from 
the expansion of E/c = (M2 c2 + p2 )1/2 = Mc(1+ p2 /M2 c2)1/2. 
 
 
6.5.2. Darwin term 
 
This correction term concerns the value of a wave function at the atomic origin. It 
reads as: 
 e[∇2Ao]/8M2c2 = e[∇2V]/8M2c2 = -e/8M2c2 ∇⋅E= 
  - Ze2/8M2c2δ3(r)  
 
Here, V= Ao is the Coulomb potential of a positive charge Ze located at the frame 
origin; Because of the delta function, this term is non-zero for S-states only. This 
term reflects positive-negative energy labeled states interferences 
(Zitterbewegun). 
  
 
6.5.3.Spin-orbit correction term  
 
The form for this correction in the atomic case reads: 
 
 (e  

! 

h /4M2 c2)(1/r)(dAo/dr)) σ  ⋅ L=  
 e/(2M2 c2)(1/r)(dAo/dr)) S⋅ L   
 
Note the substitution S =  

! 

hσ  /2 for the spin operator. This term automatically 
includes Thomas precession. It is zero for L=0 states (S-states).  

The importance for us is that given a 2L+1 multiplet, this operator would mix 
base states of spin to orbital angular momenta whenever a variation of the 
Coulomb field is present. 
 
 
6.5.4. Magnetic field coupling term (Zeeman effect) 
 
The correction term is given by (e/2Mc) σ  ⋅ B. This term combined to the linear 
one coming from expanding (

! 

ˆ p -(e/c)A)2/2M, namely, 
 
 -e/2Mc (

! 

ˆ p ⋅ A + A⋅

! 

ˆ p ) = - e  

! 

h  /2Mc B ⋅ L; 
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This leads to the Zeeman effect operator:  
 
 -(e/2Mc) B ⋅ (  

! 

h  L + σ  ) =  
 - (e  

! 

h  /2Mc) B ⋅ (L + 2S)  
 
The factor e  

! 

h  /2Mc = µo is Bohr magneton corresponding to 0.58 x 10-8 ev/gauss 
for the electron. 
 The importance of the spin-orbit coupling, especially in the context developed 
in this book, is not the magnitude of the energy corrections, but the fact that it 
breaks symmetries that hold in non-relativistic quantum theory. 
 With hindsight gleaned from KGS equation, it is apparent that the Hilbert 
space for the particle/anti-particle-states must be the direct sum of both elements. 
Spinors make the formalism somewhat less transparent that the one obtained for 
scalar base functions. With a little patience you can go through the calculation of 
the spectra for hydrogen-like atoms. 
 
 
6.5.5. Hydrogen atom revisited 
 
The 1-system corresponding to an hydrogen atom is used to examine the response 
of the model operator Ho derived from (

! 

ˆ p -(e/c)A)2/2M + eAo for the case where 
no transverse A is present: 
 
 

! 

ˆ H o = 

! 

ˆ p 
2/2M + eAo (6.5.5.1) 

 
The longitudinal field Ao is taken as -Ze/r. The non-relativistic eigen functions 
and eigen energies, in particular for hydrogen Z=1 are known.  

Consider the fine structure correction: 

! 

ˆ H 1= (

! 

ˆ p 
2)2/2M3c2. The first thing to do 

is a comparison of the order of magnitude for the correction: <

! 

ˆ H 1>/<

! 

ˆ H o>.  
 

 <

! 

ˆ H 1>/<

! 

ˆ H o> ≈ (<

! 

ˆ p 
2>/2M3c2)/(1/2M)= 

  (<

! 

ˆ p 
2>/M2c2)=(McZα)2/M2c2)= (Zα)2  (6.5.5.2) 

 
α is the fine structure constant. For hydrogen, the ratio is about (1/138)2 or 10-5, 
smaller than the reduced mass effects. The fine structure correction to the energy 
is hence negligible. Of course, a different result obtains for energy gaps. 
 More interesting for future applications is the study of a magnetic field on 
hydrogen-like atoms. The effective Hamiltonian reads: 
 
 

! 

ˆ H = 

! 

ˆ p 
2/2M + eAo - µo B ⋅ (L + 2S) =  
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! 

ˆ p 
2/2M + eAo -  µo ∇∧A ⋅ (L + 2S)  (6.6.5.3) 

 
The replacement on the second line uses eq.(6.1.4).  The form shown by this 
operator is valid for a Coulomb Hamiltonian.  
 For molecular oxygen, the quantum state may have amplitudes at a triplet spin 
state and, consequently in presence of an electromagnetic field the spin multiplet 
will be split. This is in fact a first step in the activation process of O2(3Σg

-) found 
on Earth atmosphere. 
 
 
6.6. Relativistic “electron-only” theory 
 

Dirac equation hides a place to accommodate charge conjugation symmetry. 
This makes particle-states and anti-particle-states to become related via charge 
conjugated Dirac operators. Also, parity-transformed base functions obeys the 
same Dirac equation as the original base function. In fact, different sets of 4x4 
Dirac matrices can be used to show the non-relativistic limit of Dirac’s theory, or 
develop the spinor point of view; e.g. a special set of gamma matrices makes 
charge conjugation identical with complex conjugation (see e.g. R.H.Good,Jr. 
Rev. Mod.Phys.27(1955)187-211 for detailed analyses). The important point is 
that any two sets of 4x4 Dirac matrices are connected by a similarity 
transformation. This is a theorem known as the fundamental theorem.  

In few words, if an abstract quantum state is projected in Dirac-space, the 
wave function must be invariant to the way Dirac’s gamma matrices are chosen 
so long they are related by the fundamental theorem. Different sets of gamma 
matrices will elicit different aspects of the same abstract quantum state. 

Let us discuss some specific cases. The charge conjugation operator C is 
defined as the product: -i γ5 γ1 γ3 = -i γ0 γ2. Thus, the charge conjugated base 
function is: Ψc =  C

! 

" t , where 

! 

" t is the transpose of the Dirac adjoint spinor,  

 

! 

"  = Ψ†γ0 .  

In presence of an electromagnetic field the charge conjugated state fulfils the 
equation: 

 ( i   

! 

h  γµ ∂µ − M c/  

! 

h  ) Ψc  = -e γµ Aµ Ψc (6.6.1) 
 
in the same external field Dirac equation for the electron states reads: 
 
 ( i   

! 

h  γµ ∂µ − M c/  

! 

h  ) Ψ   = +e γµ Aµ Ψ (6.6.2)  
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The solutions to eq.(6.6.1) for Ψc are closely related to that of eq.(6.6.2). Observe 
that these equations define two different Hamiltonians; one for charge +1, the 
other –1. Yet, a symmetry operation link both and if we use one equation to 
describe both charge states, the solutions for positive and negative energy labels 
transform separately under proper Lorentz transformations as well as under space 
inversion. Their solutions remain strictly separated from each other (free system).  

As Feynman pointed out, the puzzle of negative energies for KGD and Dirac 
equations showed that the crucial idea necessary to wed quantum mechanics and 
relativity together was the existence of antiparticles and their base states.  

Pair production and pair annihilation are well-established experimental 
phenomena. This makes Dirac’s equation less puzzling. 

A spinor for a free solution to the Dirac equation with positive energy label is 
denoted by u(p,s); the negative energy label case the spinor is denoted as v(p,s). 
Charge conjugation changes the sign of momentum p into –p and the energy 
label; the average values of the spin operators also change sign: s into -s. Now, 
after charge conjugation negative-label energy spectrum appears as a positive 
energy label spectrum. For the standard particle interpretation the negative energy 
solutions of the Dirac equation correspond to the charge-conjugated solutions of 
positive energy, and vice versa. 
  

Hole theory is not discussed here, although it played an important role in the 
development of relativistic quantum mechanics, today it is superseded by 
contemporary field theory. Thus, one should not worry about negative energy 
solutions if a proper formalism is developed to calculate base states for atoms and 
molecules at a relativistic level with the help of Dirac equation. 

The textbook theory presented above (except for the view expressed in this 
work concerning quantum states) corresponds to a one-electron model submitted 
to the Coulomb interaction of a nucleus. So far we focus attention first on the 
non-relativistic limit for this fundamental equation thereafter hydrogen-like 
systems are examined. Now, the relativistic theory for many electrons material 
has developed to a high level of accuracy; we will briefly examine some issues. 

The Dirac Hamiltonian in eq.(6.2.3) for one electron is specialized for h=1 
units: 

  hD = c α  ⋅ -i∇   + (β -1)c2 + Vnuc (6.6.3) 
 
This operator is applied as a substitute for the Schrödinger one-electron 

operator in the electronic Hamiltonian for n-electrons and m-nuclei: 
 
  Hel,D= Σi=1,n hD,i + Σi<j (1/|ri-rj|) (6.6.4) 
  Vnuc,i = Σk=1,m (1/|ri-Rk|)  (6.6.5) 
 
This four-component formulation covers the whole periodic table of elements.  
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As commented by Reither, one should not mix up large and small component 
with “particle” and “ antiparticle” states. From the presentation given here it is 
clear that each type of base function is represented by 4-vectors each. The 
Hamiltonian operator eq.(6.6.3) corresponds to a semi-classic situation. For Vnuc 
is the nucleus-electron interaction operator where the quantum system standing 
for a nucleus is replaced by a positive charge acting as a source of Coulomb 
potential for electrons.  

The reader is invited to visit specialized sources such as: M.Reither, 
Theor.Chem. Acc.116(2006)241-252); R.Mastalerz et al., J.Chem.Phys. 
127(2007) 074105); and references therein. MOLCAS quantum chemistry 
package version 7 is available and many of its features published in: Aquilante et 
al., J.Comp.Chem. 31 (2009) 224-247. 

The computation procedures never mix up base states of particle/anti-particle 
material systems. In this manner one can keep the idea associated to matter 
conseving scheme characteristic of the non-relativistic models. This is not a dis-
advantage only that one has to be careful not mixing different levels of 
presentation. The relativistic effects are translated to the conservation of total 
angular momentum. However, standard probabilistic interpretation of wave 
functions coming fromthe family of quantum Euler-Lagrange equation is not 
granted. 

  
 

6.7. Towards a Field Theory Framework 
 
The construction of the non-relativistic approach in preceding chapters (as well as 
following ones) is based on conservation assumption of the material basic 
elements; electrons and nuclei numbers do not change. In the relativistic approach 
the number of material elements (particles and anti-particles) can change in many 
different manners. Furthermore, spin (S) and space (L) quantities can vary 
independently while, as we saw above, the relativistic case the total angular 
momentum J=L+S provides quantum numbers. 

Experimentally, positrons can be prepared in any free momentum p and spin 
direction with no correlation whatsoever to an electron with which we want it to 
collide. In principle, there is need for two I-frames in the laboratory environment. 
Consider the “chemical reaction”: 
 |e+ > + |e- > → |photon(s) >   

First, at the right-hand-side there corresponds to two possible spin states, 
singlet (S=0) and triplet spin (S=1) states that determines the number of photons 
produced in an event of real space. The feature with Dirac equation is that by 
including charge conjugation symmetry, the quantum states are independently 
described as correlated spin 1/2 state. The particle model is not consistent with 
Dirac equation. 
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Creation and annihilation particle-states together with the introduction of a 
vacuum state are hence required to construct a quantum field model. See Freeman 
Dyson, Advanced Quantum Mechanics, World Scientific, New Jersey, 2007, for a 
clear and detailed presentation. 

The point is the following: we have to show that if there are quantum states in 
real space then there must exist a quantum evolution equation. And because one 
is not describing the material system as such, there is no need to call for the 
duality pervading present literature pointing to wave-like/particle-like behavior. 
Such duality arises as a result of imposing classical pictures to quantum 
mechanical results. 

A quantum field theory scheme requires much more mathematics and physics 
than it is possible for us to deliver here. Yet, some glimpses can be given to help 
seizing the type of requirements. 

The I-frame system evolves in space-time continuum; from a fixed laboratory 
frame the origin is located at r. At this point, one can think of having a set of 
possible frames Pr attached to the point r. Let these possible frames be related, 
two-by-two, by an element g of a symmetry group G; for example a rotation 
group as we saw in Chapt.2. We speak of the wave function φ(r) and seek for the 
transformation properties when an element p of the set Pr is acted by an element g 
of the group G; as we already know the wave function belongs to a vector space 
V over the field of complex numbers. When g acts on a frame p changing it into 
another that is designated, as p.g two things have to be taken into account. 1) 
How does V change? 2) How does the value of the wave function φ(r) change 
with this mapping? To emphasize the relation to the possible frames let us write 
φ(p) the value of the wave function at fixed r for the selected frame p so that for 
the transformed frame pg one has φ(pg) = g-1φ(p). Because G is a group it is 
ensured that the inverse to g exists. How does V change? Let w be another 

element of V, g transforms V via the mapping: wa g⋅w (it remains to identify the 
nature of the composition law that for the time being its exact form is not relevant 
to us).  

Now, let us change (move) r over the space K with respect to laboratory-
frame as we want to describe the dynamics of this system. At each different point 
in space-time there are sets of possible frames and we want to study if there is 
any relationship between them. A concatenation P of various Pr as r ranges over 
K is known by the name: principal fiber bundle; it is then said that Pr is the fiber 
over r. The situation differs from the one found in Chapters 2 and 3 where 
concatenation via translation operators only required homogeneity of real space; 
and for rotations, the origin was kept fixed. Now, the situation is akin to a 
“trajectory-like” description for the I-frame system with fixed internal quantum 
state.  
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 Select now a frame p ∈ Pr, the mapping ga pg gives a topological 
equivalence of G with Pr. The concatenation P is not equivalent to the product 
space K×G; the reason is that P may be twisted. It is the space P that interests us. 
The wave function φ is to be regarded as a function on P. The point is to make a 
continuous choice of reference frame; such mapping is known as a gauge. To 
define this gauge, let U be a sub-region of K, then the function su: U→P, such 
that su(y) ∈ Py for all y belonging to U is called a gauge. It is not difficult to see 
that the wave function change under a change of gauge (even if you cannot see 
the exact form that for the time being is not relevant). Thus, going around in a 
closed loop you will end up with a wave function differing from the initial one. If 
such is the case this means that there are external potentials that will produce 
such type of response. We are no longer in the business of constructing base sets 
but now since we are at a Fence there is need to include characteristic elements of 
such special region. 

At the Fence, physically meaningful quantities should be independent of the 
choice of gauge. The action introduced above is to be generalized into an action 
density wherefrom equation of motions are to be constructed. The important point 
is that such an action density is not sufficient. What is needed is a connection 
defined on P, i.e. it is a gauge potential, that transform in such a way that when 
incorporated into the proposed action density it leads to a gauge-invariant action 
density. Once such procedure is achieved one can get at constructing a model as 
shown in the section below using a very elementary approach. What we are after 
is to make plausible the construction of a wave function φ(r) that is not a 
projection from an abstract quantum state on the real space configuration 
coordinates. Now, one is moving from real space projected towards abstract space 
projected wave functions. 

 
 
6.7.1. Feynman Path Integral Method 
 
  

We use here Feynman procedure to construct a φ(r) function that could be 
related to a quantum state. If one can do that then the construction of field theory 
objects will be simplified. As a matter of fact, the base functions can be turned on 
to field operators. We will not do the complete transaction but only suggests the 
type of procedure. 

From special relativity theory any material system associated to an inertial 
frame may also show intrinsic half-integer angular momentum (spin). The frame 
systems as a whole may then have integer or half-integer spin: bosonic and 
fermionic frame systems. Here, we stick to the non-relativistic limit; relativistic 
schemes to construct base states are examined in chapter 7. 
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The space of abstract |Ψ>-states is a Hilbert space. Now, take real space 
coordinates for a given I-frame system to get the base states |Ri> just as we did 
with the system “inside” the I-frame. The wave function is given by the map 
Ψ(Ri,t) ⇔ <Ri| Ψ ,t>. The linear superposition principle reads: 

 
 |Ψ,t> = ∫d3Ri |Ri><Ri| Ψ,t> =  
 ∫d3Ri|Ri> Ψ(Ri,t)  (6.7.1.1) 
 
The wave function of the I-frame at the point in real space Rio at initial time to is 
given as a datum: Ψ(Rio,to) = Ψo; the problem is the construction of the wave 
function at another point Ri at time t: Ψ(Ri,t). The latter is a mathematical 
function derived from Ψo. The issue is the nature of su ch a function. It can be 
just a numerical function related via an algorithm to the datum function or it can 
be a projection of the quantum state we are studying.  

Let us insist on the issue: observe that Ψ(Ri,t) and Ψ(Ri,t) = <Ri| Ψ,t> are 
different in the following sense anyway. The latter is the projection of an abstract 
quantum state on to configuration space at point Ri. While Ψ(Ri,t) will be the 
value of a mathematical function derived from an initial value of a function Ψo 
evaluated at Ri. Thus, Ri and Ri are endowed with different meanings. These 
spaces are isometric however; they differ in their ideologic content, namely, Ri 
indicates the position coordinate of a material system while Ri is element of an 
abstract mathematical space.  
 
E&E-6.7.1-1. Try to sense the subtle difference 
Use of <Ri|Ψ,t> implies the existence of an abstract quantum state that is 
projected onto a space that has nothing to do with such state. When we use 
Ψ(Ri,t) it is implied that this functions obtains from a mathematical procedure 
after imposing initial and particular boundary conditions; it is the calculated 
function which is important. Unfortunately we call them both a wave function. 
Try to keep in mind the conceptual difference. 

Let G(R,R’,t) be a kernel such that starting with a wave function Ψ(Rio,to=0) 
taken as a datum Ψo(Ri) (initial condition) leads to the function Ψ(Ri,t); let us see 
what does it take to construct the wave function Ψ(Ri,t), formally: 
 Ψ(Ri,t) = ∫G(Ri,Ri’,t) Ψo(R’i) d3R’i  (6.7.1.2) 
Therefore, all what we need is a rule to calculate the propagator G(R,R’, t). This 
mathematical object is known as Green function. Path Integral prescription 
introduced by Feynman leads to the Green function in terms of the system’s 
classical (mechanical) action, dt L(Ri,dRi/dt) = dA (Cf.eq.(6.7.A-5) : 
 
 G(Ri,Ri’, t) = Σpaths exp(i A[li]/  

! 

h) =  
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 Σpaths exp{i/  

! 

h  

! 

dt

0

t1

" L(Ri,dRi/dt)} = 

 Σpaths exp{i/  

! 

h  

! 

"
R
i

'
,0

R ,t  P⋅dRi – H dt }  (6.7.1.3) 

 
This symbolic sum is taken over all paths { li } connecting the initial space time 
point (R’i,to) to the final one (Ri,t). Feynman let you imagine that at the initial 
point at to=0 and domain dRi around position coordinate Ri’ start taking all 
possible paths linking that domain to another characterized by time t and position 
R. The terms found in this equation are just weights for each G(Ri,Ri’,t); another 
way is to take these functions as base functions we use to expand the initial 
quantum state with the caveat that you may produce a change of quantum state at 
the end of the day. In so doing, the algorithm pick up the information in the 
neighborhood of the wave function, namely, G(Ri,Ri’,t) Ψo(R’i) d3R’i and sum 
over the range d3R’i that is of course a lot of work; don´t try by yourself, let the 
formalism do the job. 
 Each path has a characteristic contribution related to an energy change so that 
picking all paths would mean that the system has the possibility to count all 
possible actions (energy balances), e.g. P⋅dRi – H dt). 

The formula must be read as a set of slices when one sets Δt=t/N and define 
the function: 

 GN = (Mi/2π i  

! 

hΔt)3(N+1)/2∫exp(iAN/  

! 

h)d3Ri(1)…d3Ri(N-1)
  (6.7.1.4) 

The function AN: 
 AN = (Mi/2Δt)Σj=1,N(Ri(j)-R’i(j))2–V(Ri(j),tj)Δt  
  (6.7.1.5) 
It is at this point the characteristic interactions are included via the term 
V(Ri(j),tj). The time slice tj equals jΔt. One should get the exact Green function 
by taking the limit N→∞ so that one gets: 
 
 Ψ(Ri,t) = ∫(limN→∞ G N(Ri,Ri’,t) Ψo(R’i) d3R’ 
  (6.7.1.6) 
The wave function calculated with the above formula requires information along 
all possible paths connecting the starting to the end points. The method would be 
useless if you have to take the infinite family of paths; the point is that only some 
specific sets of paths sharing some variational property would contribute most to 
the algorithm. For the present case what one is doing is to make possible the 
calculation of the quantum state of an I-frame system sustaining an initial 
quantum state Ψo(R’io). We are not calculating the material system as a particle 
but the quantum states when an external potential V(Ri(j), tj) is present. 
 The question is: what relationship has this quantum state evolving in time with 
Schrödinger equation? 
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The most spectacular achievement Feynman got in his PhD thesis 
(Rev.Mod.Phys. ) was to show that Ψ(Ri,t+Δt) fulfils the estimate: 
  Ψ(Ri,t+Δt) = Ψ(Ri,t) - iΔt/  

! 

h  V Ψ(Ri,t) +  
 i(  

! 

hΔt/2Mi)∇Ri
2 Ψ(Ri,t) + o(Δt) 

 
Rearranging the terms of this estimate multiplying by  i  

! 

h   and dividing by Δt: 
 
 i  

! 

h(Ψ(Ri,t+Δt) - Ψ(Ri,t))/Δt =  
 -(  

! 

h
2/2Mi)∇Ri

2 Ψ(Ri,t) + V Ψ(Ri,t) + o(Δt)  
 
Taking the limit Δt→0 he got Schrödinger differential equation, that for the 
present case corresponds to quantum states sustained by the I-frame carrying a 
mass Mi: 
 i  

! 

h  ∂Ψ(Ri,t)/∂t =  
 -(  

! 

h
2/2Mi)∇Ri

2 Ψ(Ri,t) + V(Ri) Ψ(Ri,t) (6.7.1.7) 
 
The result obtained by Feynman is another way to arrive at Schrödinger equation 
but this time in real space.  

Observe that the actual “position” of the mass is irrelevant because the 
operator ∇Ri

2 senses the wave function curvature. Here, the mass position 
entering the amplitude AN is fixed (Cf.Eq.6.7.1.5). So you can stick to the idea 
developed in this work and think the quantum state is sustained by the material 
system, of course, but not as a (classical) particle if you keep “inside” the I-frame 
where eq.(6.7.1.7) is derived. The quantum system is expressed in its own space 
so to speak. The existence of the wave function is granted by the presence of the 
material system inside the volume used for carrying out integrations. Actual 
position is not an issue. 

The integration implied by the calculation of the Green function (6.7.1.4) is a 
mathematical operation; results obtained by computing are validated against 
experimental data. What imports is the propagation of Ψo(R’i) not the “paths”.  
Thus, Ψ(Ri,t) describes the quantum state sustained by a material system in the 
external potential V(Ri). If Ψo(R’i) stands for data concerning a given quantum 
state in a domain (ball) around R’i, the algorithm permits constructing a 
(different) wave function for the quantum state at domain around another point; 
of course it ought to be the whole domain to get an exact result for Ψ(Ri,t) which 
means we introduce more and more domains for Ψo(R’i).  

The material system sustaining that state can be described as an I-frame 
system with mass Mi at the origin but the quantum state is evaluated in an open 
domain around that origin which is displaced along classical paths. This is 
another view; the result concerning the quantum state is independent from such 
pictures if carried out exactly. 
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This is an amazing way to look at quantum mechanics. It is understood that 
the potential V(Ri) generates transitions in a way to be determined later on. Here, 
two aspects are highlighted: 

  
-1) The constructive procedure is ensured by the fact that Ψo(Ri,to) in a domain 
around Ri should contain enough information about the quantum state in Hilbert 
space that was prepared at to and projected in this configuration space. The set of 
square integrable complex functions over real space is a realization of Hilbert 
space. And the solutions to eq. (6.7.1.7) belong to this set provided the space is 
rigged with some limits allowing for generalized functions such as Dirac delta 
function. 
 
Lemma: A wave function is the projection of a quantum state on the configuration 
space that for the present case happens to be R3, namely <Ri |Ψ ,t>. 
 
-2) The potential V(Ri) is a resource. A number of laboratory situations can be 
model with the help of specific potentials to the extent that external forces acting 
on the I-frame system can be simulated with V(Ri). The quantum states obtained 
from Schrödinger Eq.(6.7.1.7) are then those the material system will expose to 
interactions of many kinds. You can see that a classic system (I-frame) 
“dissolves” into a representative set of quantum base states incorporating the 
external potential; this statement simply means that again one focus attention on 
pertinent quantum states that are sustained by the material system this time 
including its internal quantum state. Today, atoms can be slowed and 
subsequently trapped in laboratory space. The slowing can be achieved 
electromagnetically, laser cooling for example. Any response from the I-frame 
system is mediated by changes of its quantum state. 
 

The I-frame as such can always be seen as a classical system (object). If you 
have a manner to record its classical coordinates (origin) then follow the 
trajectory say with velocity v with respect to another I-frame where you might be 
sitting. In this case, the classical linear momentum Mv is well defined. This 
situation does not eliminate the sources for quantum mechanical response to 
appropriate probes. There is nothing strange if you keep clear distinctions 
between these two levels of description. The two-fold-ness belongs to the 
knowledge available.  

The I-frame system may have “internal” quantum states ruled by eq.(6.7.1.7). 
Thus, for example, a hydrogen atom moving in real space sustains quantum 
electronic states with respect to the inertial frame also. Note that if the material 
system were at the “border” of the (classical) universe its quantum states will be 
the same as those determined in your laboratory. One can detect hydrogen atoms 
in galaxies far distant from the one we are moving with.  
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 The mixing of classical and quantum elements on one and the same material 
system is one of the mechanisms allowing for proper descriptions of molecular 
machines. The import for designing molecular machines (Barbara, P.F. (editor) 
Acc.Chem.Res.34, Issue 6: Molecular Machines Special Issue) cannot be 
overlooked. 

  In spectroscopy, recorded from a fixed frame, the velocity of the source will 
show up as Doppler type effects that are so useful in Astronomical Spectroscopy. 
The base states of this composite system are direct products of internal and global 
base states. So long we keep accelerations out of the analysis, inertial frames 
permit setting the basis to analyze quantum processes far back in the past. 

 Once the analysis in absence of acceleration (forces acting at the origin of the 
I-frame) is done one can start examining situations where trapping external 
potentials are set up. A first analysis starts by letting aside couplings with the 
internal degrees of freedom to incorporate them when they become central to the 
understanding of processes (phenomena).  

We conciliate now the abstract configuration space used in preceding chapters 
(see sect. 4.1.4) with a real configuration one where the coordinates are labels 
that support the material space and can be mapped to a position configuration 
space. In order to get a consistent approach one assigns a given set of coordinates 
and keep the order all along. Only the base states supported by such coordinate 
can be changed. The configuration space retains its invariant character assigned 
to it in the abstract model; with this caveat, the “Lemma” presented above holds. 

 
 
6.9. From here to a quantum field model 
 
We close this chapter at this point.  


