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7. Statistics and quantum molecular issues 

  
 
 
 
 
 
 

Preceding chapters have addressed the study of quantum states sutained by 
material systems taken. The role played by I-frames is central as it is the resource 
used to locate systems in laboratory space; it provides also with the origin to 
construct a configuration space where (internal) quantum states are projected; 
namely, an abstract mathematical space that remains that way unless couplings 
with external potentials (systems) are incorporated in specific theoretic schemes 
at the Fence.  

We used Feynman’s quantum mechanics in real space settings. The relation 
between material systems in laboratory space and quantum state defined in 
abstract spaces goes through material parameters (mass, charge) entering the 
eigenvalue equations that generates bases states and eigenvalues of operators 
related to physical properties: Hamiltonian, angular momenta. The place occupied 
by classical particles is taken over by the I-frame concept and the paths are just a 
pictorial way to describe the evaluation of an integral.  

In so far quantum aspects are concerned nothing changes because one focus 
attention on the quantum states and not in the way the material system sustaining 
them behaves in a classical sense; couplings between these levels must be 
handled on a case by case basis. The game to master here is the construction of a 
passage from a set of N independent I-frame systems that we can partition in 
different aggregates.  We study ways one may construct to distribute the N-
systems in base states of a common container (Box).  

From relativistic mechanics discussed in preceding chapters an I-frame system 
besides the total mass and charge is also identifiable by spin labels. In this chapter 
we keep as much as one can the emphasis on quantum states and present first a 
short review of statistical aspects to follow with the study of assemblies of bosons 
first and thereafter fermions. Because the states of a particle system is related to 
infinite number of base states one changes counting particles by the counting of 
states: density of states becomes a key magnitude. Here one moves from few I-
frame systems to intermediate size condensates until getting at solid-state aspects. 
For the sake of completeness some of the simple models used to construct base 
sets are discussed again; this time emphasis is on the special characteristics 
shown by chemical physics systems. 
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7.1. N-copies of single systems: Gibbs ensemble  
 
 
One of the factor missing so far is related to thermodynamic and the variables, 
volume (V), pressure (P) and absolute temperature (T) that are required for a 
proper characterization of material systems at a laboratory level. Define a given 
volume in laboratory space; take one I-frame system and calculate particle-state 
in a box, the procedure yields energy labels (levels) for a system the mass located 
at the origin of that I-frame; the internal quantum space (if any) is not touched. 
This trick permits introducing energy levels that are functions of the volume; the 
initial particle I-frame vanishes, this is a sort of quantization procedure. Each of 
the N-copies is assigned a particular label. 

At the foundation of statistical mechanics lies the idea of well-defined objects. 
An object (molecule, atom) is characterized by a a particular label selected from a 
set of energy levels {εk}; the particle occupies one level and only one. How many 
particles can occupy a given level depends upon spin to be examined later on. To 
each energy value a base state |εk> is assigned as well as an eigen function labeled 
by the ordinal number affecting the energy level (the set is denumerable). Yet one 
should not forget energy differences between eigenvalues are the actual physical 
quantities at a Fence. Actual energy exchange between subsystems occurs at a 
laboratory level; something like the “real world” but, because of the assumption 
of equilibrium one does not need to care for.  

From thermodynamics we take the concept of thermal equilibrium at 
temperature T. In principle, there is an energy source/sink that would eventually 
lead to thermal equilibrium that is not included. We can then suspect that 
quantum states showing a variety of non-zero amplitudes will result after 
interactions with the thermal bath. Because at this stage one is not concerned with 
the mechanism leading to a thermal equilibrium but acknowledges kBT as the 
measure of “quantum” of thermal energy; kB is Boltzmann constant. 

If the single system shows no entanglement with the thermal bath as it should 
be the case one can define a quantum state as a linear superposition such as: 

  |Ψ, T>= 

! 

k
" |εk><εk|Ψ,T> = 

  

! 

k
" |εk> Ck(Ψ,T) (7.1.1) 

The label T plays the role of a kind of time; the Hamiltonian 

! 

ˆ 
H  characterizes the 

one-system.  

Statistical thermodynamics revolves around the partition functions q defined 
as: 
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  q= Σk exp(-εk /kBT) (7.1.2) 

Calculating now the average value of the Hamiltonian with eq.(7.1.1) one gets: 

   E(T) = <Ψ, T|

! 

ˆ H |Ψ, T> =

! 

k
" εk [Ck(Ψ,T)|2  (7.1.3) 

A consistency requirement for thermal equilibrium leads to the assignment: 

  [Ck(Ψ,T)|2  α  exp(-εk /kBT) / q (7.1.4) 

It is a common assumption of standard quantum mechanics that for a 
molecular system, one molecule can be in one and only one of the accessible 
states; we retain this view for the time being to check how far one can go. In this 
perspective, a system of N non-interacting “molecules” is distributed among box 
states, and the number nk of systems having energy εk in the collective of N 
systems in thermal equilibrium is given by: 

  nk = N (1/q) exp(-εk /kBT)= N[Ck(Ψ,T)|2 (7.1.5) 

The second equality implies that N independent systems in the box; the number 
nk is proportional to the amplitude square in agreement with a population model. 

At this point note that total quantum state for the system in the box appears to 
be a simple product of individual quantum states for which the projection 
hypothesis holds. 

Conservation of molecules number is then ensured due to normalization of the 
quantum state 

  N = Σk nk= Σk N[Ck(Ψ,T)|2 = N ΣkCk(Ψ,T)2 (7.1.6) 

For N non-interacting copies the average energy Eav reads: 

  Eav = N <e> = N (1/q) Σk εk exp(-εk /kBT) =  

   Σk nk εk  (7.1.7) 

For the time being we take the energy levels as functions of the volume V: εk(V). 
Thus, the average energy is a function of V,T and N: Eav(V,T,N). 

The quantity [Ck(Ψ,T)|2 equals nk /N may be seen in two different manners. It 
is a relative occupation of the k-th base state. Or we can use our point of view: it 
just indicates the relative intensity response from the root state εk when a probe 
targeted to the spectrum rooted on that level is used at the Fence. This latter 
interpretation avoids the necessity imposed by the particle model. For now one 
can actually think that the measurement of root state activations is modulated by 
the amplitude in modulus square of the quantum state given in eq.(7.1.1). A probe 
designed to sense the coherent linear superposition would never be measuring 
such incoherent quantities. 
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In general quantum mechanical terms, the average value of a hermitean 
operator 

! 

ˆ O  is given in the energy base set eq.(7.1.1) by: 

  <

! 

ˆ O > = Oav = 

  

! 

k
"

! 

k'
" Ck’*(Ψ,T) <εk’|

! 

ˆ O |εk> Ck(Ψ,T) (7.1.8) 

For a diagonal operator in this base set one has: <εk’|

! 

ˆ O |εk> = <εk|

! 

ˆ O |εk> δk’k. 
Moreover, if the quantum state stands for a Gibbs ensemble then the quantum 
average turns out to be given as a statistical mechanical average: 

  <

! 

ˆ O > =Oav=(1/q)Σ |ηk><εk|

! 

ˆ O |εk>exp(-εk /kBT) (7.1.9) 

We can see that eq.(7.1.4) multiplied by the number of copies N tells us that 
NCk(Ψ,T)2 is just given by the canonical distribution: N (1/q) exp(-εk /kBT). 
This result was also found in eq.(7.1.5) that yields the number of system in the 
ensemble associated to energy εk. 

For ensembles where the copies are described by an arbitrary quantum state 
the canonical density matrix operator is given by: 

  

! 

ˆ "  = exp(-

! 

ˆ H /kBT)  (7.1.10) 

The quantum average over a base set where the Hamiltonian is not diagonal is 
given by: 

  <

! 

ˆ " >(t) =

! 

k
"

! 

k'
" Ck’*(Ψ,t) Ck(Ψ,t) <

! 

"k’|

! 

ˆ " |

! 

"k> 
   (7.1.11) 

The evolution in time starting from <

! 

ˆ " >(to) is then controlled by the time 
evolution of the amplitudes different from zero that were prepared at initial time.  

 As we have discussed in previous chapters, if you take 

! 

ˆ H  from eq.(7.1.10) 
to be diagonal in the basis set used in eq.(7.1.11) there will be no real change in 
amplitudes. One stays in the formalism realm describing systems in thermal 
equilibrium. 

 

 

7.2. Jaynes-Shannon model 
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So far the relationship between amplitudes and statistical distributions has 
followed an analogical path. Jaynes use of Shannon information theory formalism 
leading to a general formulation of statistical mechanics (Jaynes, E.T. 
Phys.Rev.106, 620-630) may give us a hand. The maximum entropy principle is 
the key to construct many sorts of statistical distributions. 

Introduce now a set {fk} of characteristic frequencies to be related, at a later 
stage, to the occupation frequency Nk/N. A characteristic frequency is an 
intensive quantity defining the property of a system under specific experimental 
constraints.  

One asserts existence of these characteristic frequencies. The function fk is a 
positive number that can vary from zero to one; when the occupation number is 
zero, fk =0, there are no molecules in the k-th state. When fk=1, only the k-th state 
has an occupation number different from zero, all the molecules are in the k-th 
state. Alternative formulation: fk is zero for all cases where the k-th state has zero 
occupancy; when fk is equal to one the k-th state is the only one that is occupied. 
The difference is important whenever the photon field and excited states are 
involved; or spin selection rules must be respected, e.g. ortho/para hydrogen. 

In normal systems, the energy levels should have assigned such quantities. The 
problem is to derive equations connecting these objects to experimentally 
measurable properties. 

  

Shannon function approach. Introduce now a function of these characteristic 
frequencies, namely, the Shannon function Sh =Sh(f1,…, fk,…). We take the 
dimensionless form: 

  Sh = -Σk fk ln fk (7.2.1) 

Because 0≤ fk ≤1, Shannon function Sh is always positive; the natural logarithm 
of a quantity smaller or equal to one yields a negative value; for all fk that are 
zero, the factor in front the logarithm kill the infinite terms. For example, a 
collection of N states not occupied, each term in the sum is zero, Sh(empty)=0. 
Observe that the quantum mechanical representation of quantum states retained in 
the present work is perfectly adapted to such a treatment. As a matter of fact, 
people working in quantum information theory employ such a type of analysis. 
 For a system where all elements can occupy one and only one state, the 
Shannon function is zero also. Thus, if S is a well-behaved function between 
these two limits, then S must show a maximum. 
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Note that the set {fk} is a characteristic property of the state that a given 
system may have at a given time; the problem of statistical mechanics is to find 
out the distribution for a particular system under specific constraints that can be 
mapped out to these characteristic frequencies. 

 

Microcanonical ensemble. This corresponds to an isolated system in 
equilibrium. The system energy ranges in the interval (E, E + δE); assume that 
there are W(E,V,N) different micro states with energy εk. Hence, the 
characteristic frequency fk=1/ W(E,V,N) if εk lies in the interval (E, E + δE), then 
fk=0 if the energy level lies outside the energy shell. Some counting models are 
discussed below. 

In statistics, a concept of probability is used instead of our characteristic 
frequencies. Let N be the total number of microstates in the ensemble; and 
consider the number of times νj the j-th microstate is “sorted out” in a counting 
procedure or experimentally measured somehow. The probability (measured as a 
frequency) to pick the j-state out is then pj = (νj /N). The average of A will be 
now eq.(7.2.2): 

  <

! 

ˆ O > =(1/N)Σ j <εj|

! 

ˆ O |εj> νj = Σ j <εj|

! 

ˆ O |εj> pj  (7.2.2) 

For the micro canonical ensemble you assume that a measurement time is so short 
that the system is considered to be in only one microstate; thus you collect them 
(count) and get νj. Finally, the ensemble average <

! 

ˆ O > is taken to represent the 
measured value Oobs. This picture is akin to the idea that each molecule occupies 
one and only one micro state. 

Eq.(7.2.1) multiplied by Boltzmann constant (to keep dimensions correctly, SJ 

= kBSh) becomes the definition of Jaynes’ entropy for the micro canonical 
ensemble: 

  SJ(E,V,N) = kB lnW(E,V,N) (7.2.3) 

It is interesting to introduce now statistical probabilities; these can be attained 
experimentally at variance with the characteristic frequencies. Let the 
ratio (N/Ν)  represent the number of replicas ν of the N-particle-copies system; 
that is a huge number for macroscopic systems.  

We assume that for each replica we have the same probability distribution 
p1,p2, …,pk,… of populating the micro state 1,2,…,k,… respectively. For a 
sufficiently large ν, the number of systems in the ensemble that are in the state r 
is given by 
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  νr = ν pr (7.2.4) 

The statistical weight Wν of the ensemble when n1 of its systems are in state 1, n2 
of its systems in the state 2, … is the number of ways in which this particular 
distribution can be realized, i.e. 

  Wν = ν! / ν1! ν2!… νr!… (7.2.5) 

The ensemble entropy is given by 

  S ν(ensemble) = kB ln Wν  (8.2.6) 

Replacing now the corresponding distribution function 

  S ν(ensemble) = kB ln (ν! / ν1! ν2!… νr!…) (7. 2.7) 

Stirling formulae helps calculating the factorials: ln(m!) = m ln(m) – m: 

  S ν(ensemble) = kB (ν ln ν − Σr νrln νr) (7.2.8) 

Now, we have eq.(7.2.4) relating the number of systems in a given state to the 
probability of finding it there (νr = ν pr). One finally obtains: 

  S ν(ensemble) = -kB ν ( Σr prln pr) (7.2.9) 

The entropy of a single system (as the one we have been using) is given  

  S(one-system) = S ν(ensemble)/ ν =  

   -kB (Σr prln pr) (7.2.10) 

The entropy obtained from the statistical probabilities has the same form than 
Shannon function. We can hence think of a map between the pr and the frs. Thus, 
consistency between the entropy obtained by multiplying Shannon function by 
Boltzmann constant and eq.(7.2.11) requires that: 

  pr → fr  (7.2.11) 

A successful statistical modeling will produce portraits of the intrinsic properties 
of the system. (See below and Jaynes (1980)).  

It is important to realize the logical difference between these quantities. The pr 
-frequencies (probabilities) represents actual results of measurements while fr, the 
characteristic–frequency, is a property of the state of the system (including 
external constraints). 

You wouldn’t be surprised if we take the assignment above, i.e. pr → fr → 
Cr(Ψ,T)2 and get the standard statistical interpretation of quantum mechanics! 
You also realize that coherence effects vanish. But, if you plan spectroscopic 
probing targeting specific root state so that coherence is not relevant, then one 
obtains relative response intensities Cr(Ψ,T)2 depending on absolute 
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temperature. Temperature modulates the spectral response as it is well 
documented for the “hot-bands” in spectroscopy. 

 Start from the normalization condition and renaming the square amplitudes 
with symbol fk: 

  Σk [Ck(Ψ,T)|2 =  Σk fk = 1 (7.2.12) 

This equation comes up as a result relating a quantum state for a material system 
put in thermal equilibrium with a bath at absolute temperature T. Shannon model 
implemented by Jaynes leads to establishing a rather natural connection between 
the quantum state of each replica with statistical distributions over states 
occupancies. Since the system is assumed to be in thermal equilibrium we do not 
need to care for mechanisms of energy exchange that would, at the laboratory, 
lead to such thermal state. The set {Ck(Ψ,T)} is calculated with the canonical 
ensemble recipe eq.(7.1.4) to within a factor. 

For a system that is not in equilibrium, the amplitudes are time dependent; 
irreversible process description can be made in this framework. If we take as 
model the example discussed in Chapter 1 one can easily figure out the effect of 
increasing temperature, namely, a chemical change. Quantum mechanics can give 
us clues on the quantum paths such a system may take. While statistical 
mechanics inform us on the set of amplitudes in square modulus that can be 
extracted from eq.(7.1.5). 

In general, one can prepare system with arbitrary occupation numbers. The 
total number of occupied states being N that corresponds to the number of copies 
(Jaynes E.T. Ann.Rev. Phys. Chem. 31 (1980) 579-601). Call Nk an arbitrary 
assignment to the k-th state (of one copy if you prefer) with the constraint 
equivalent to eq. (7.2.2), namely, 

  N = Σk Nk (7.2.13) 

The total energy differs from eq.(7.1.7) because the distribution now is not the 
equilibrium one: 

  E = Σk Nk εk  (7.2.14) 

It is apparent that we must focus on the sets of different {Nk} satisfying 
eq.(7.2.2). 

Canonical ensemble. All states with fixed (size) number N, and volume but 
the energy can fluctuate: <E>. This ensemble describes systems in contact with 
thermal baths.  
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To obtain the entropy of a system in a heat bath, substitute eq. (7.1.5) after giving 
it the form: fk = nk/N = (1/q)exp(-εk /kBT), into eq.(7.2.1) multiplied by Boltzmann 
constant:  

  S(V,<E>,N) = kB ln q + <E>/T (7.2.15) 

The question is whether such replacement is consistent or not.  

Let us first show the correctness of the substitution made to get the entropy 
S(V,<E>,N), namely the use of Boltzmann distribution. The problem is to find a 
distribution that renders Shannon function to a maximum under the constraints of 
energy and particle conservation. Average energy is given as: 

  EAv = <E> = Σk fk εk (7.2.16)  

Employing Lagrange multipliers to mix variations δS, δ Σkfk and δ(EAv) where the 
energy levels are invariant (constant volume), that is: 

  δS - β δ(EAv) - λ δ Σk fk = 0 (7.2.17) 

The dimension of β is inverse energy, λ is dimensionless, one easily obtains: 

  fk = exp(-βεk - λ) (7.2.18) 

The relationship fr → Cr(Ψ,T)2 still holds true independently from the type of 
ensemble. Now, the parameter λ is given as: 

  λ = ln (Σk exp(-βεk) ) = ln q(β) (7.2.19) 

For a system in thermal equilibrium β=1/kBT and q(β) is just a partition function. 
In this case, by making the assignment fk → nk/N, eq. (7.2.2) is immediately 
fulfilled. The initial model is hence recovered with the help of Shannon function. 
The set of nk /N renders Shannon function stationary (maximum) compatible with 
energy and particle number conservation. 

Formally we have found consistency. We will now use the construction 
starting from the micro canonical ensemble. 

From the statistical point of view we have identified W(<E>,V,N) to 
W(E,V,N). The concept of ensemble permits solving this issue. For now ν→∞ as 
well as the volume in such a way density is constant. This is the thermodynamic 
limit. In this case, the relative fluctuation in the average energy goes to zero. One 
can confidently replace <E> by E and write S(V,<E>,N) → kB ln W(<E>,V,N) → 
kB ln W(E,V,N) → S(V,E,N). Consequently 

  S(V,E,N) = NkB ln q + E/T (7.2.20) 

Rearranging this,  
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  E – TS = - N kBT ln q = - kBT ln qN = - kBT ln Q 

This is Helmholtz free energy A, i.e. E – TS= A (V,T,N). This is just equal to the 
natural logarithm of the partition function q(T,V,N) multiplied by minus kB T. 
This is a fundamental result: 

  A(V,T,N) = - kBT  ln Q (7.2.21) 

Gibbs free energy G(P,T,N) is defined by A +PV. Thus,  

  G(P,T,N) = - kB T ln Q + Pv  (7.2.22)  

 Planck function Ψ is given by A(V,T,N) /T = Ψ. All the thermodynamics is 
embodied in Ψ. Boltzmann constant permits relating to the quantum structure of 
the system via the energy spectra found in the partition function. 

The question for us is to work a connection between the characteristic 
frequencies and the underlying quantum structure.  

The functionality of the occupation (population) numbers nk must be 
investigated. If eq.(7.1.5) define them, it is apparent that they will depend upon 
volume, temperature and total number of particles.  

The import of partition functions is due to the fact that all equilibrium 
statistical properties of a system can be obtained from their derivatives. To 
simplify notations let us call β = β(T) = 1/ kBT.  

The average energy as a function of q is given as: 

  ∂lnq/∂β = (1/q)(∂q/∂β) = (1/q) ∂(Σk exp(-βεk)/∂β = 

   −  (Σk εk  exp(-βεk) (1/q)   

Multiply by N both members:  

  N ∂lnq/∂β = − Σk εk exp(-βεk)N(1/q) =  

  -Σk nk εk= -U  (7.2.23) 

Note that we use now the symbol for internal energy U to replace our initial 
average energy <E>. This is justified by the equality N ∂lnq/∂β=−U in the sense 
that the distribution exp(-βεk)N(1/q) actually would maximize entropy submitted 
to constraints; this has to be shown (see below). We see that the partition function 
for the N-system will be qN = Q. This agrees with a sum-over-states and not over 
particles as commented above. Thus, 

  U = - ∂lnQ/∂β  (7.2.24) 
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In terms of the numbers pi = ni/N , that using standard language are taken as a 
propensity to populate the i-th state, we get:   

  <e> = - ∂lnq/∂β (7.2.25) 

The average energy per particle in thermal equilibrium is just the derivative of the 
natural logarithm of the molecular partition function with respect to β(T). It is a 
property depending upon the energy spectrum of the Hamiltonian operator H 
taken in a restrictive sense; it is usually assumed to be a molecular Hamiltonian; 
this issue will be discussed later on.  

  

  In thermodynamics, for an isolated system where the total energy E is 
conserved, the thermodynamic variables can be volume, entropy and particle 
number, that is U=U(V,S,N). So far we can obtain an energy N<e(V,T)> = <E>→ 
E(V,T,N). Entropy S must be incorporated in the statistical mechanical level. 
Therefore, it is important to define the thermodynamic conditions valid for the 
statistical mechanics model. This can be done with the help of some 
thermodynamic potentials. The objective is the construction of two entropy state 
functions, S(V,E,N) and S(V,<E>,N), and find out conditions to equated them.  

 

 

7.3. Thermodynamic potentials  
 

 

In thermodynamics we start from an energy conservation postulate; one focus on 
variations of energy. Two mechanism are used to alter the internal state of the 
system: work δW done by or onto the system and exchange of heat, δq , thus  

  δU = δW + δq.  

Both terms in the sum depend upon the way (path) taken to change the 
thermodynamic state of the system.  

Select the class of reversible processes and mechanical model: δW = -P dV. 
Absolute temperature permits defining entropy, S, used as integrating factor:  

  δq/T = dS.  
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For reversible processes where the pressure P and temperature T are defined 
and fixed, the internal energy U is a function of volume and entropy: U(V,S). We 
add the dependence on particle number through the term µdN; µ is the chemical 
potential, i.e. the change in energy when particle number changes by one unit. 
Thus, one should write: U(V,S,N); and because it is a state function we write the 
differential form as: 

  dU(V,S,N)= (∂U/∂V)S,N dv + (∂U/∂S)v,N dS + 

    (∂U/∂N)v,S dN (7.3.1) 

From the first law examined above one can write an explicit equation: 

  dU = -P dv + T dS + µ dN (7.3.2) 

Comparison of these two equations shows that:  

  (∂U/∂v)S,N = -P,  

  (∂U/∂S)v,N = T and  

  (∂U/∂N)v,S = µ   (7.3.3) 

These are named as thermodynamic potentials. 

It is worth note that the variation of internal energy U with entropy equals 
absolute temperature; on the other hand, 1/T corresponds to (∂S/∂U)v,N; it is the 
way entropy changes with internal energy that defines the inverse of the absolute 
temperature. In the Boltzmann factor (1/T) we have indirectly connected entropy 
to variations with internal energy. The internal energy can be made a function of 
entropy: <E> →U(v,S,N) if energy <E> is constant.  

Whenever we have special cases where processes at constant energy E are 
equivalent to processes at constant temperature with <E> having a fix limit E; 
then we can introduce comparisons between these two different ways to describe 
thermodynamic systems. Another way to say it is that the microcanonical and 
canonical ensembles are equivalent under specified conditions (see below). 

Helmholtz free energy compared to the internal energy corresponds to a set of 
variables where entropy is replaced by absolute temperature. To achieve the 
change of variables proceeds as follows: 

  A(v,T,N) = U(v,S,N) –TS (7.3.4)  

In terms of differentials one gets:  

  dA(v,T,N)= dU(v,S,N) - TdS - SdT =  

  -P dv+TdS-TdS +SdT + (∂U/∂N)v,S dN  (7.3.5) 
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Finally: 

  dA(v,T,N)= -Pdv - SdT+ (∂A/∂N)v,T dN =  

  -Pdv – SdT + µ dN (7.3.6) 

Observe that (∂A/∂N)v,T is the chemical potential (numerical value). 

For Gibbs free energy G when compared to Helmholtz free energy, the 
volume V is changed into pressure P: 

  G(P,T,N) = A (v,T,N) + Pv (7.3.7) 

This closes the presentation of thermodynamic aspects. It is interesting to 
realize that the ensemble concept actually permits the establishment of relation 
ships with thermal types of quantum states. Although the phases are not 
accessible, the relative intensities are obtained from statistical analyses. 

Irreversible processes can also be incorporated as shown by Jaynes. As we 
suggest with eq. (7.1.11) the time evolution of quantum states included in a non-
reversible ensemble would permit handling phenomena at the Fence.  

 
 
7.4.Thermal equilibrium and radiation 
 
 
Electromagnetic radiation is inseparable from electrically charged matter. The 
interaction between them corresponds to changes of their quantum states. Energy 
is emitted or absorbed by material systems at a given temperature in the form of 
radiation of the electromagnetic type, e.g. visible, infrared, microwave are just 
radiation types characterized by frequency ranges. The product of frequency (ν) 
and wavelength (λ) in vacuum is equal to the speed of light c. 
 λν = c (7.4.1) 
The eq.(7.4.1) hides the quantum nature of light. For, hν is a quantum of energy 
related to the frequency, h is Planck constant, and λ/h is the inverse of linear 
momentum, 1/k, of the electromagnetic wave. Then, (7.4.1) can be read as 
follows: 
 Eν = hc (1/λ) = k c  (7.4.2) 
The wave number (1/λ) is of course ν/c and the momentum of the 
electromagnetic wave is just de Broglie relationship k = h/λ. The energy is 
quantized; the number of photons for a given frequency is the equivalent to the 
occupation numbers we have been using. 

Consider a collection of N energy levels that are sustained by a material 
system that at temperature T have amplitudes squared proportional to Boltzmann 
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factors. If the degeneracy of the level is mi the Boltzmann distribution function 
one can write: 
 fi(Ei) = Cd(T) mi exp(β Ei) 
where  
 Cd(T) = 1/(Σi mi exp(β Ei)) = 1/q.  
The occupation number being Ni= fi(Ei) N and, of course, Σi Ni= N. In order to 
induce a form valid for more general cases, the occupation number for the 
discrete level case is written as:  
 Ni= N Cd(T) mi exp(β Ei)  (7.4.3) 
For high-density materials energy levels are almost continuously distributed (for 
all practical purposes) we transform Ni into the number of energy levels g(E) in 
the energy shell E, E+dE: g(E)dE and equate it to Cc exp(-βE) dE; the sub index c 
refers to a continuum case. In the standard interpretation, this equation 
corresponds to a relative frequency, probability, of finding a fraction of the given 
material excited at a specific energy E in the energy shell dE. Adding the 
contributions from E=0 up till very high energy E=∞, we get the normalization 
condition: 
 ∫0∞ g(E)dE = ∫0∞ Cc exp(-βE) dE =  
 ∫0∞ (Cc /β) exp(-βE) dβE) =1 (7.4.4) 
Thus, with (Cc /β)=1 one obtains: 
 g(E) = β exp(-βE) = (1/kBT) exp(-βE) (7.4.5) 
The occupation number (or number of atoms if you like) at energy E within an 
energy shell is given by 
 N(E) dE = N/ kBT exp(-E/ kBT) dE (7.4.6) 
The ratio in occupation numbers (populations) between two energy shells N(E1) 
and N(E2) is just  
 N(E2)dE/ N(E1)dE = N(E2)/ N(E1) =  
 exp(-ΔE21/ kBT). (7.4.7) 
 

For high-density matter where, for all practical purposes, occupation numbers 
vary in a continuous fashion thermal equilibrium is achieved everywhere. 

We can count the occupation number, for instance, above a given energy 
threshold Ethr as follows: 
 N(above threshold) =  
 (N/ kBT )∫E=Ethr exp(-E/ kBT) dE (7.4.8) 
The upper limit is E=∞. 
 
E&E.7-1 Determine the temperature required for the quantum state to show occupation 
numbers different from zero in the energy region corresponding to visible light. Assume, 
for a typical material N=5x1028 atoms/m3 
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We have then a simple correspondence between fully discrete and quasi-
continuum spectra. We handle some specific aspects of radiation and thermal 
equilibrium. We want to have a description of blackbody (BB) radiation. For this 
reason, some macroscopic variables must be introduced. 

Stefan-Boltzmann law: The intensity I or the total radiation intensity (W/m2) 
emitted from a body at temperature T is proportional to the fourth power of the 
temperature,T4: I = eM σ T4. The emissivity eM is a property of given material; σ is 
a constant equal to 5.67x10-8 W/m2-K4. Remember that W in Watts is energy per 
time, power. Planck constant is energy by time, action. The emissivity has no 
dimension; it represents the ability of a body to radiate efficiently and also is 
associated with its ability to absorb radiation. 

There are two concepts of interest: radiance (H) and irradiance (I). The 
irradiance, I, is the energy emitted by a body; thus, a change of the occupation 
numbers of the body is detected, in the decreasing direction (those excited levels 
lose energy). The radiance impinging on a body, irradiance, changes the 
occupation numbers; not only there will be an increase in some of them, one may 
expect some excited levels to make an induced emission so that some level 
occupancy may go down. The radiance is proportional to the irradiance: H = eM I 
or I = H / eM. 

The perfect absorber also describes the perfect emitter, eM=1. A perfect 
absorber is known as a blackbody. This, in turn, is the best emitter of thermal 
radiation; this radiation is known as blackbody radiation.  

Blackbodies radiate with the same spectral power for that occurring within a 
cavity. One example of cavity may be a cubic box as the one used above. 

The base states of a radiation field (Cf. Chapter 5) are those corresponding to 
harmonic oscillators of given frequency: En(ν) = hν(n+1/2). The quantum number 
n is the occupation number of the ground state: |n,ν> corresponds to the base state 
of n-photons each with energy hν. A base state in a box is represented by a 
product involving the internal state (number of photons n) and the external 
(propagation in the box space) plane wave form. 

 |k, n> = exp(k1L1+ k2L2+ k3L3) |n, ν> (7.4.9) 

The reciprocal vector k=(k1,k2,k3) indicates the propagation direction of the 
electromagnetic wave and momentum; the box defines a fixed laboratory frame. 

The problem is counting the number of cavity modes. A problem similar to the 
one discussed for particle-states in a box. Periodicity is ensured whenever  

 k1L1= n1π; k2L2= n2π; k3L3= n3π; n1, n2, n3 = 0,1,2…  
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Any mode in the cavity corresponds to a specific k; the number of modes is 
obtained by specifying the integer numbers n1, n2, n3 because: 

 k2 = k1
2 + k2

2 + k3
2 =  

 {( n1π /L1)2 +( n2π /L2)2 +( n3π /L3)2 } (7.4.10) 

The total number of modes in a volume v= L1 L2L3 for a given wavelength 
λ=2π/k can hence be counted in a manner similar to particle-state in a box. The 
volume of the octant is: 

 (1/8) (4π/3) (n1 n2 n3) = 

 (1/8) (4π/3) (2 L1 /λ)(2L2/λ)(2L3/λ) = v/8 (4π/3)(2/ λ)3.  

The number of modes Wν can be cast in terms frequency: 

 Wν = v/8 (4π/3)(2/ λ)3 = (4/3) πν3/c3 v  (7.4.11) 

This number represents the number of modes for all frequencies up to the 
frequency ν within the volume v. This number must be doubled to take into 
account polarization; light has spin 1 but only two components express due to the 
zero rest mass. The density ρ(ν) or number of modes per unit volume is then 
given by: 

 ρ(ν) = 2 Wν /v = (8/3) πν3/c3  (7.4.12) 

Calculate now ρ(ν+δν) - ρ(ν), that is the number of frequencies in the frequency 
shell: 

 dρ(ν)/dν = 8 πν2/c3   (7.4.13) 

The energy per mode u(ν)  is given by dρ(ν)/dν multiplied by the average energy 
at temperature T: 

 u(ν) = dρ(ν)/dν <nν> = 8 πν2/c3 (Uν-hν/2) = 

 (8πν2/c3) (hν /( exp(hν /kBT) -1) (7.4.14) 

u(ν) describes the energy density per unit frequency ν for radiation anywhere 
within an enclosed cavity at a temperature T. In the cavity, travelling waves are 
found in all directions. The total energy density u emitted at all frequencies is 
given by: 

 u = ∫0∞ u(ν) dν (7.4.15) 

The result of integration is Stefan-Boltzmann.  

Let us relate the energy density to the intensity I(ν): 

 I(ν) = c u(ν) (7.4.16) 
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The blackbody emission, total radiance IBB(ν) from the frequency interval dν is 
given as: 

 IBB(ν) dν = (c u(ν)/4 ) dν = 

 2πhν3/c2 dν /( exp(hν /kBT) -1) (7.4.17) 

Finally, | dν | = (c/λ2) dλ and one can define an IBB(λ,T). 

 
E&E.7-2. Calculate explicitly IBB(λ,T). 

(Answ. IBB(λ,T) = 2πhc2 λ-5 ( exp(ch/λkBT) -1)-1. 
 

The total radiance emitted from the blackbody surface within a wavelength 
interval Δλ is given by: 

 IBB(λ,Δλ,T) = IBB(λ,T) Δλ (7.4.18) 

 
E&E.7-3. Show that for Δλ in nano meters, λ in meters and T in degrees Kelvin, then 

 IBB(λ,T) = (3.75 x 10-25) λ-5 ( exp(0.0144/λT) -1)-1 W/m2-nm  
 
E&E.7-4. Calculate the radiation power P= IBB(λ,T) Δλ ΔA coming from a surface (ΔA) 
at temperature 300K and area 0.02 m2 over a wavelength interval of 0.1µm at a 
wavelength of 1.0 µm. 

Hint: Change IBB(λ,T) above to W/m2-µm 

Answ. 1.06x10-15 W. 
E&E.7-5. Change the temperature up to T=1000K and calculate the radiation flux or 
power as in the preceding exercise. 
 
 
7.5. Spontaneous emission at radio frequencies 
 

 

For nuclear magnetic resonance (NMR) transition amplitudes Tν at radio 
frequencies for spontaneous emission lead to a corresponding probability Aν 
given by: 

 Aν = (8πν2/c3) hν (8π3µ2/3h2) sec-1  (7.5.1) 
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As pointed out by Purcell this is so small a quantity that the process is not 
effective in bringing a spin system into thermal equilibrium with its surroundings. 
But he also noted that for a system coupled to a resonant electrical circuit, the 
factor (8πν2/c3) no longer gives correctly the number of radiation oscillators per 
unit volume, in unit frequency range; now there is one oscillator in the frequency 
range associated to the circuit. The spontaneous probability is hence increased so 
that the mechanism should be able to establish thermal equilibrium in a time of 
the order of minutes and not 1021 minutes as was in the preceding case. 

 It is this type of effect that will be used to modulate life times of quantum 
states below. 

 

 

7.6. Model Systems: Partition functions  
 
 

Consider the harmonic oscillator at frequency ν. The enerny is hν, where h is 
Planck constant. 
 εk = (k+1/2) hν  and k=0,1,2,… 
 q = Σk exp(-(k+1/2) hνβ) =  
 exp(-(1/2) hνβ) Σk exp(-k hνβ) (7.6.1) 
Put hνβ =x = hν/kBT to get: 
 q = exp(-(1/2) x)Σk exp(-k x) =  
 exp(-(1/2) x)1/(1-exp(-x)) =1/2sinh(x/2)  (7.6.1’) 
 
Note that exp(-k x)= (exp(-x))k and the result follows from standard algebra, i.e. 
geometric progression. The partition function reads: 
 q= exp(-(1/2) hν/kBT) (1/(1-exp-hν/kBT ))  (7.6.1’’) 
The Helmholtz free energy A per particle is 
   = kBT (1/2) x) - kBT ln(1-exp(-x))-1 = 
  hν/2 + kBT ln(1-exp(-hν/kBT))  (7.6.2) 
It is of interest to label the frequency also. There are many physical systems 
where the frequency is quantized. For normal modes this would be a natural 
choice. If we change the unit of frequency from an inverse of time to circular 
frequency for the i-th mode, 2πωi = νi, Planck constant is then “rationalized” by 
taking it to be h/2π = h, then hνi =hωi. Circular frequency is more often used in 
spectroscopy. 
 Ai = -kBT lnqi =  
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 hωi /2 + kBT ln(1-exp(-hωi /kBT)) (7.6.3) 
The total free energy is then 
 A = Σi Ai =  
 Σi {hωi /2 + kBT ln(1-exp(-hωi /kBT))} (7.6.4) 
The average energy of a single oscillator Ui in thermal equilibrium is given by: 
 Ui = (1/qi) Σk  εk

i exp(-εk
i β) = ∂ (Ai /β)/∂β =  

 hωi /2 + hωi /( exp(hωi /kBT) -1)   (7.6.5) 
The total energy U is given by the sum: 
 U = Σi U i =  
 Σi {hωi /2 + hωi /( exp(hωi /kBT) -1) } (7.6.6) 
Taking away the zero-point energy, U-ZPE can be written as  Σi hωi /( exp(hωi 
/kBT) -1). If we define the average occupation number of the i-th mode as <ni>: 
 <ni> =  1 /( exp(hωi /kBT) -1). (7.6.7) 
This is the average occupation number at temperature T. Planck proposed it on 
experimental grounds by 1900. Now, eq.(A30’) reads: 
 U = Σi hωi (1/2 +<ni>) (7.6.8) 
The statistical distribution looks like an infinite set of oscillators with non-integer 
occupation numbers <ni> for this normal (field) mode. As a matter of fact such is 
not the case because we are overlooking the fact conveyed by the averaging 
operation. This means that we have prepared the quantum state of the EM field 
with a definite amount of energy. The wave function would take care of such 
situation. The ZPE is operating in Fock (Hilbert) space and serves the purpose to 
convey the set of frequencies that are actually been activated. This trick underlies 
the difficulties associated with mixing the levels of description. As we already 
know one cannot eliminate the vacuum base state at a given frequency by at the 
level of counting energy exchanged the ZPE cancels out. 
 

The above calculations permit appreciating the type of analyses required in 
quantum statistics. We give now an overview of classical statistics. 

 
 

7.7. Classical Statistical Mechanics  
 
 
The construction of a partition function is the key element to construct statistical 
distribution. The quantum case appears fairly simple yet the actual calculation of 
energy levels may be a daunting task. The place of a partition function is taken by 
the time dependent density   defined over the atomic and momentum coordinates 
as arguments: r=(r1,…,rN) and p=(p1,…,pN). So far focus has been on quantum 
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aspects but now we move to a Fence like system where classical mechanics 
drives the dynamics on the N-particles inside a volume v. A brief review of 
classical mechanics follows. 
 
7.7.1. Elements of Classical Mechanics 
 
The inertial frame associated to a given quantum system belongs to real space. 
One way or another, the classical formalism must be considered. We have 
signaled the material system as sustaining the quantum states but now seem 
appropriate to have a look to this material aspect in real space. 

Let us paraphrase Newton’s axioms putting the emphasis in our language: 

First axiom: a material system remains at rest, or in uniform motion, if no 
external forces act to change its state of motion. 

Second axiom: the change in the state of motion of a material system is 
proportional to the force that acts on the body, and takes place in the direction of 
the force. 

This is the famous Newton’s second law. We note that the state of motion 
represented by the momentum p of the material system is conserved in absence of 
external interactions. 

The third axiom concerns the law of action and reaction. There are two more 
axioms that concern absolute time and absolute space, respectively. They read as 
follows: time flows equally, without relation to anything external and there is an 
absolute time; absolute space, without relation to anything external, remains 
always similar and immovable. 

Once a reference frame is introduced, r defines the position of the I-frame. The 
second quantity defining the fundamental state of motion is its momentum p. 
Thus, the rate at which p changes in time, namely, dp/dt signals the presence of 
an external force F. The second axiom takes on the mathematical form: 

 dp/dt –F =0     (7.7.1.1) 

The pair (r,p) is a point in the phase space; a volume element in this space, drdp 
has dimension of Action. 

In non-relativistic mechanics, the velocity of the I-frame, v=dr/dt, when the 
total mass M is located at the origin, the linear momentum is proportional to the 
velocity; M plays the role of proportionality constant; p = Mv. Newton second 
law reads now: 

 

! 

˙ r  = v ,  

! 

˙ p  = F    (7.7.1.2) 
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In so far the action is concerned, the momentum and position coordinates are 
known as canonically conjugated. The classical Hamiltonian function H(r,p,t) 
with dimension of energy is canonically conjugate with time. For an isolated 
system with mass M, the (kinetic) energy is given by p2/2M, in presence of scalar 
potential U(r,t) and a vector potential A(r,t) the Hamiltonian is given by: 

 H(r,p,t) = (1/2M) (p - A(r,t))2 + U(r,t) (7.7.1.3) 

If there is no vector potential modulating the I-frame particle momentum, 
Hamilton equation of motion follow directly from eq.(7.7.1.2) and (7.7.1.3): 

 

! 

˙ r  = ∇p H(r,p,t)   and     

 

! 

˙ p  = -∇ r H(r,p,t) .  (7.7.1.4) 

The pair of potentials (A,U) in eq.(7.7.1.3) are called a gauge. Two gauges 
leading to the same motion in configuration space are equivalent. 

 

The equations (7.7.1.4) permit the study of transformations in phase space 
from a given point (r’, p’) at time t’ into (r, p) at time t; the intermediate values 
in phase space form a trajectory Γ. This trajectory relates two points in phase 
space in the time lapse (t-t’) so that we do not have a problem with absolute time 
or space; this is an important point. The action A(Γ) along the trajectory is 
defined by the integral along the trajectory by: 

 A(Γ) = ∫Γ (p · dr –Hdt ) (7.7.1.5) 

The question is whether or not an action function can be defined with trajectories 
in configuration space only. You remember that in the preceding sections the 
quantum states were projected in configuration space. Here we follow de Gosson 
analysis: if time t-t’ is sufficiently small, then the phase space arc G projects 
diffeomorphically onto a curve γ without self-intersections in configuration space 
RR r

3 that connects r’ at t’ with r at t. The projection is bi-univoque so that γ (real 
space) uniquely determines Γ (phase space). The integral (7.7.1.5) can safely be 
performed with paths belonging to RR r

3 x R Rt. 

 Besides entering some important definitions of classical analytical 
dynamics, the mapping between phase space and configuration space is 
fundamental. A second aspect concerns Liouville Theorem. The connection 
between r’ at t’ with r at t defines a mapping ft that is volume preserving. A ball 
B in phase space with radius R and origin (ro,po) can be analyzed by looking at 
projections over different planes; the result is a disk that, for instance in the (y,py) 
and  (y,pz) planes one gets, respectively: 

  (y-yo)2 + (py-pyo)2 ≤ πR2 and  
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  (y-yo)2 + (pz-pzo)2 ≤ πR2. 

Gromov, as cited by de Gosson, made the extraordinary discovery that the 
canonically conjugated shadows never become smaller that their respective πR2, 
while the non-conjugated shadows can be made arbitrarily small. This is a non-
squeezing property that was not known before 1985! These results are a sort of 
equivalent of Heisenberg’s inequalities that imply that Hamiltonians flows on 
phase space volumes are much more “rigid” than that of straight volume 
preserving diffeomorphisms. 

  

We come back to our I-frame systems. Let the material systems associated 
to each I-frame have masses M1, M2,… and quantum states derived from 
Hamiltonian operators ˆ 

H 1, ˆ 
H 2,… with no interactions among those subsystems. 

Each subspace shows complete sets of base states, in particular those derived 
from the self-adjoint Hamiltonian operators. At the Fence, there are three 
possibilities in so far fenomenological descriptions are concerned. Case one: 
consider the I-frame systems as classic each one having the total mass located at 
the origin the whole without interactions. Case two: include interactions while 
keeping the I-frame classic. Case three: attempt real space quantization 
procedures, e.g. box quantization. 

Before entering a quantum mechanical analysis let us introduce classical 
mechanical aspects first. This will not only help introducing classical dynamics 
language but constitute a widely used simulation technique. 

At the Fence the I-frames carry (support) quantum states that in view of the 
inertial nature of the frame cannot distinguish the state of motion. Seen from a 
fixed laboratory frame, each I-frame displays a velocity vi. There is more. 
Construct the product between Mic and dsi; dsi=+cdt √1-vi

2/c2 that are well 
defined provided the internal quantum states do not change. To get the 
differential of the action dAi we equate this to Midsi. Integrating over the 
trajectories initiating at point Ri’ at time t’ and ending at Ri‘’ at time t’’ on the 
action functional A[γ] is defined as: 
 A[γ]  = -∫ Ri’,t’ Ri,t Mi c dsi = 
 -∫ t’t’’ Mi c (dsi /dt) dt = 
 -∫ t’t’’ dt Mi c2 √(1-vi

2/c2) (7.7.1.6) 
In classical mechanics the integrand of (7.7.1.1) corresponds to the Lagrangian 
function L: 
 L(Ri,

! 

˙ R 
i
,t) = - Mi c2 √(1-vi

2/c2) = 
 - Mi c2 + (1/2) Mi vi

2+O(vi
4/c2)  (7.7.1.7) 

In what follows we use 

! 

˙ R 
i
= vi. The linear momentum of the i-th inertial frame is 

defined by: 
 Pi= ∂ L(Ri, vi,  t)/∂vi (7.7.1.8) 
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Neglected the constant term -Mi c2 because it is the variation δL that enters the 
analysis. Using (7.7.1.7) with (7.7.1.8) we can see that the classical state of 
motion will be Pi= Mi vi. For such a sample, the total classical kinetic energy: 
 K= Σi (1/2) Mi vi

2 = Σi (1/2Mi ) Pi
2  (7.7.1.9) 

The sum is over N, the number of I-frames; these are classical entities, recorded 
from the laboratory system their position vectors can be assigned: R = 
(R1,…,Ri,…RN). To each of these points a momentum vector is assigned: P = 
(P1,…,Pi,…PN). Also, the velocity v is defined by the vector v = (v1,…,vi,…vN). 
  
 The profound difference between vectors such as R = (R1,…,Ri,…RN) where 
the tip of each Ri stands for the position with respect to the chosen I-frame of a 
particle endowed with mass Mi and the abstract configuration space we use to 
project quantum states. For now the tips of the configuration space stands as 
labels and nothing more. The labels enter the base vectors |labels> of a particular 
type of Hilbert space. 
 
 A fundamental concept of classical physics is the potential energy function 
allowing for interactions between I-frame systems and/or with external sources. 
This function is written in terms of the coordinate configuration: 
V=V(R1,…,Ri,…RN) or in compact form V(R). 
 The Lagrangian L(v,R) for low speed (non-relativistic limit) and non-
interacting system is just K(v). Including interaction it reads: 
 L(v,R)  = K(v)  - V(R) (7.7.1.10) 
We have now all the elements to construct an equation of motion for the system 
driven by the Lagrangian (7.7.1.10). First, the action over trajectories, 
A[trajectories], is a functional over trajectories relating the initial space-time 
point to the final one. There is one of those that render the action functional 
stationary. Let us calculate δA from the simple definition where the Lagrangian is 
time independent and functionally depend upon the trajectory [li]: 

 A[λi]= 

! 

dt
t
o

t
1

" L(Ri,

! 

˙ R 
i
)  (7.7.1.11) 

The variation obtains as follows: 

 δA=

! 

dt
t
o

t
1

" L(Ri+δRi,

! 

˙ R 
i
+δ

! 

˙ R 
i
)-

! 

dt
t
o

t
1

" L(Ri,

! 

˙ R 
i
) (7.7.1.12) 

You can check that the constant - Mic2 cancels out. After expanding with Taylor 
theorem and some partial integration one gets: 
 

 δA= 

! 

dt
t
o

t
1

" δRi {d(∂L(Ri,

! 

˙ R 
i
)/∂

! 

˙ R 
i
)/dt - ∂L(Ri,

! 

˙ R 
i
)/∂Ri} 

  (7.7.1.13) 
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The term in curly brackets must be zero because δRi is arbitrary thereby leading 
to Euler-Lagrange equations: 
 
 d(∂L(Ri,

! 

˙ R 
i
)/∂

! 

˙ R 
i
)/dt - ∂L(Ri,

! 

˙ R 
i
)/∂Ri = 0  (7.7.1.14) 

If we replace the Lagrangian eq. (7.7.1.5) one obtains Newton’s equations: 
 
 dPi/dt = 

! 

˙ P 
i
 = - ∂V(Ri)/∂Ri (7.7.1.15) 

In phase space, (P,R), the energy function is the Hamiltonian H(P,R) defined 
by:  
 H(P,R) = K(P) + V(R) (7.7.1.16) 
 
The energy functions defined over spaces (v,R) and (P,R) are related via a 
Legendre transformation: 
 H(P,R) = v ⋅ P - L(v(P),R) (7.7.1.17) 
And 
 L(v, R)  = v ⋅ P - H(P,R) (7.7.1.18) 
 
In phase space, the equations of motion, named as Hamilton equations read: 
 
 

! 

˙ P 
i
 = ∂H/∂Ri and 

! 

˙ R 
i
 = ∂H/∂Pi (7.7.1.19) 

 
The second equation is the definition of velocity in phase space. The first formula 
embodies Newton second law. In classical mechanics, its momentum 
characterizes the physical state. The change in time (

! 

˙ P 
i
) elicits the action of an 

external force (∂H/∂Ri). 
 
7.7.2. Statistical ensembles 
 
At the Fence, the classical dynamics of I-frames, for which their internal quantum 
states permit representing the total mass of the material system as if it were at the 
frame origin, can be simulated with molecular dynamics techniques. The 
interaction potential depends upon the (internal) quantum states; which is a 
natural result of the present approach. For the time being assume that V(R) has no 
mechanism to induce changes of quantum states in the I-frame systems 

The N non-interacting I-frame-systems occupy a given volume v. The control 
of these parameters is made in the laboratory; this includes the type of I-frame 
systems included in given experiments. The thermodynamic limit can be defined: 
limit (N/v) equals to a constant when both N and v increases without boundaries. 
The density function is hence time independent: ρ(r,p). This equilibrium density 
permits determination of average values of functions over phase space: 

 <F> = ∫…∫(d3r d3p /h3N) F(r,p) ρ(r,p) 
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W is a constant determined by normalization of the density function an is equal to 
V/N because we take: 
 ∫…∫(d3r d3p /h3N) ρ(r,p) = 1 
For the canonical ensemble one has the partition function: 
 Q = ∫…∫(d3r d3p /h3N) exp(-H(p,r) β) 
β=1/kBT The average value <F> is given by: 
 <F>(T) = ∫…∫(d3r d3p /h3N)  
  [exp(-H(p,r)/kBT)/Q] F(r,p) / Q 
By analogy with the quantum physical case, all thermodynamic functions can be 
obtained from the partition function. Note Q-1 ∂Q/∂β = <  H(p,r)>. Formally, one 
can recover all thermodynamic potentials from the partition function. This closes 
our overview on this subject.  

Fence space may remain as real 3-space with quantized internal states. The 
concept of distance and shape can geometrically be implemented. Arrays 
simulating crystals, quasi-crystals, surfaces can be constructed following 
symmetry patterns; perfect gases correspond to V(R)=0, no inter-I-frames 
interactions. Surfaces with quantum dots can be represented by substituting at 
given places with an I-frame system that stands for a default (quantum dot).  
Molecular beam experiments can be described using mixed schemes. These latter 
are especial cases to be found in scattering theory. These examples are given to 
illustrate a class of systems one can, in laboratory conditions, represent where 
quantum aspects can be partially incorporated.  
  
 
7.7. Concluding remarks 
 
This short chapter illustrates the subsidiary character of classical statistical 
mechanics where phase space plays a central role. All statistical formulae derive 
from energy levels, occupation numbers and Shannon theorem as implemented by 
Jaynes. 

Gathering results from present day technology it is quantum physics that 
informs the basic mechanism allowing for construction of all kinds of new 
devices. 

 
The point is the following: It is quantum physics that occupies center stage 

that is clearly detrimental to the apodicticity of classical physics. The latter might 
be simpler to solve a number of problems compared to a quantum approach. Yet, 
at the end of the day, the fundamental mechanisms are quantum physical in 
nature. A simple conclusion appears to be: the world (universe) where we work 
constructing scientific views is quantum physical in nature. The endeavors 
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expended in finding mechanism allowing for emergence of a classical world from 
a quantum one are probably missing the point. 
   


