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8. Modulating quantum states: Fence    

 
 
 
 
 
 
 
 

We touch in this chapter the study of interactions between quantum states as they 
can be found in laboratory space experiments. In early days of QM they were 
taken as thought experiments so that the way we see quantum states necessarily 
differ from that produced by the founder fathers. 

Here, focus is on a Fence understood as a domain mediating quantum and 
classical aspects simultaneously. We describe states of affair submitted to 
experimental scrutiny where quantum states are physical channels relating 
material systems. The abstract quantum states projected in configuration space 
can be related to wave functions constructed directly to laboratory levels; 
Feynman’s QM is an example described in preceding chapters.  

At the Fence one may assign, in a first approximation model, all mass content 
included in the material system so that interaction with external quantum sources 
may change the I-frame state of motion leading to classical accelerations that can 
be experimentally identified. 

On the other hand, in quantum chemistry one usually refers to a one-I-frame 
molecular system; yet in laboratory surrounding one can fetch material systems 
that would play the role of fragments with respect to a 1-system with same matter 
(energy) content. These latter material systems with their own I-frames would 
contribute with asymptotic states. Understanding the “passage” from quantum 
states relating many-I-frame systems to one-I-frame system is still a rarely 
discussed issue, if at all. This is the case encountered for example in bi-molecular 
reactions. Internal base states remain invariant in this setup procedure.  

Thus, the determination of quantum states is an issue when handling this type 
of situation; the game between material-system/I-frame/quantum-states must be 
understood and differentiated when the descriptive level is located at the 
laboratory space: see a recent example provided by an opto-mechanical cavity 
used to study dynamic back-action caused by electromagnetic forces in such 
cavities (Eichenfield M. et al. Nature 450 (2009) 550-555). 
  
E&E.8-1 Why is the Fence concept so relevant? 
A fundamental limit on measurement in quantum mechanics, namely Heisenberg’s 
uncertainty principle, is a consequence of non-commutativity of canonical operators 
related to so-called observables. Thus, the eigenvalues of these operators cannot 
simultaneously label quantum base states of the system; there are no eigenstates for the 
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product operator. A quantum state can hence be either represented in the base set of one 
or the other only. 
In its original cast, it is asserted that the product of the imprecision of measurements of 
conjugate observables carried out simultaneously on a system has a lower bound given 
by Planck’s constant. The formalization in quantum mechanics reads like a product of 
fluctuation operators:(

! 

ˆ A - ΔA) (

! 

ˆ B -ΔB) ≥  h/4π, and ΔA and ΔB are standard deviations 
of 
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ˆ A  and
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ˆ B  defined by ΔA = (<
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ˆ A >2)1/2; the symbol <…> stands for mean value 
with respect to a given quantum state, and similarly for ΔB.  
For the momentum and position operators one has the relation: Δpi Δqi ≥ h/4π (Cf. Eq. 
4.6.1.5). These relations are usually interpreted as the limitation of state preparations or 
the limitation of the ideal independent measurements on identically prepared systems. 
From our viewpoint it is the linear superposition with amplitudes over a number of base 
states which would respond for such fluctuations in a natural manner. 
A problem never sufficiently emphasized is that this notion is well dependent on the 
quantum state of the system as we saw in Sect. 4.6. If a measuring device takes the 
system away its quantum domain via readings of recording, then ΔA and  ΔB are 
certainly independent of the measuring apparatus. (For a detailed discussion and 
references on a more general description of statistics of measurement outcomes see 
Ozawa, Phys. Lett. A 320 (2004) 367). 

At a Fence, interaction of a well-defined quantum state with a material system 
“external” to the one sustaining that quantum state can be seen as leading to a new 
quantum state. The associated linear superposition will embody the interactions that can 
be cast in terms of uncertainty-like relationships. 

For the latter case one has replaced the effect of a sensing (measuring) material 
system by the effect produced to the scattered quantum state. 

Whatever you do, one will end up producing a perturbed quantum state, which means 
that the input linear superposition is changed into another thereby reflecting interactions. 
Moreover, at a Fence the change must be made compatible with conservation of linear 
and angular momentum and energy for the system as a whole, this simply means to 
include the quantum-measuring device. Remember that for abstract Hilbert space energy 
is a label. It is the Fence that brings us to the Laboratory world. You may call it real 
world. It is in this sense that the Fence concept is most relevant. At this frontier some 
ambiguity is unavoidable. 
 
 Last but not least, entanglement phenomenon relating one to many I-frame 
systems is a fundamental quantum mechanical issue at the core of present day 
developments in quantum cryptography, computing and information fields (see 
for instance Mathews, J.C.F. et al. Nature Photonics 3 (2009) 346-350). These 
issues are briefly mentioned here but not really studied because most of the 
ananyses use particle model representations. Only the lentanglement between an 
electromagnetic field with a two-state model system is discussed. 
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8.1. Entanglement: a primer 
 
Consider the system whose elements are a quantized EM field and a two-state 
material system where the I-frame origin is located at r w.r.t. a laboratory frame. 
Consider the Fock space elements: 
 
 exp(ikω.r) | 1ω>         =  | k; nω=1>  (8.1.1a) 
 exp(ikω’.(r’-r) | 1ω>  =  | k’; nω=1> (8.1.1b) 
 
The last base vector indicates the source of the EM-field at the origin of the I-
frame for the material system. 

Let indicate by |a> and |b> the base vectors for the material system, energy 
eigenvalues εa and εb; εb- εa > 0 and the energy gap corresponds to hω.  

Consider the base state for a beam focus onto the I-frame system: 
 |k; nω=1>⊗ |a> 

For the interacting systems introduce the entangled base state: 
  
 | nω=1; a> (8.1.2a) 
 

The labels used remind us the energy information of the initial beam only. The 
base state is not separable ; pictorially speaking the “photon” is dissolved in the 
material system; it is therefore not available in the photon field. To describe this 
new situation a new base state indicated as is introduced: 

 
 | nω=0; b> (8.1.2b) 
 

Again, the vacuum state is “dissolved” in the material system excited state; it is 
not separable into constituents. These two state are associated to one-I-frame only 
at variance with the incoming beam plus material system state |k; nω=1>⊗ |a>. 
The 1-I-frame base states are used to describe time dependent entangled quantum 
states, |Ψ,t>: 

 |Ψ,t> = Ca(t) |  nω=1; a> + Cb(t) | nω=0; b> (8.1.3) 
 

The quantum state is no longer a simple product. These types of states are said to 
be entangled. 

The quantum state |Ψ,t> in the entangled base set is a periodic function: 
 
 |Ψ,t> = cos(ft/2h) | nω=1; a> + sin(ft/2h) |  nω=0; b> 
  (8.1.4) 

The constant f couples the two base states together. In this simple model, at t=0 
the amplitudes was at |nω=1; a>. In units of (f/2h) when the  argument takes on the 
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value π/2 the amplitude correspond to the vector (0   1), namely, | nω=0; b> shows 
unit amplitude. In principle, if no interactions with the surrounding show up the 
time evolution will continue unabated. 

From the laboratory side the 1-I-frame system will appear as photon emitter. 
Thus a base state similar to those (8.1.1b) with origin at the material I-frame and 
reciprocal vectors indicated by k’ is required: 

 
 exp(ikω’.(r’-r) | 1ω>⊗ |a>  = | k’; nω=1>⊗ |a>  (8.1.1c) 
 
For the time being the model handles elastic scattering situations. Because the 

material system compensate any change in direction the kω’ vectors corresponds 
to a high density of states. In this sense (8.1.1c) differs from (8.1.1b). If the size 
of the source is small enough the photon may be emitted in any direction. 

But the source corresponds to state |Ψ,t>, an entangled state where the photon 
is “dissolved” in. There is no amplitude at |k’; nω=0>⊗|b>.  

The bases sets are now written:  
 
 (|k; nω=1>⊗ |a>   | k; nω=0>⊗ |b>)  ingoing 
 (|k’; nω=1>⊗|a>   | k’; nω=0>⊗|b>)  outgoing 
 

The origin of vectors k and k’ are different. The process would go from ingoing 
state [1   0]ing through [cos(fωt) cos(fωt)]ent to eventually end up in a quantum 
state  [1   0]out. 

The process below is stochastic:  
 
 [cos(fωt)    sin(fωt)]ent → [1   0]out  
 

Such is the nature of spontaneous emission. For the time being we take that as a 
fact. We do not have the theory to calculate something that will look like an 
event. The process:  

 [1   0]ing → [cos(fωt)   sin(fωt)]ent  
 

Because one moves from a two-I-frame system (ingoing state) to one-I-frame 
system (entangled state) the process above shares the look of an event. It is not 
sure that such process will be successful. If it happens the system become 
homogeneous. Yet we cannot predict when the emission event will take place. As 
counting processes are involved frequency measures are adequate and along this 
line the introduction of probabilistic talk appears adequate. 

Retain basically the concept of entangled state. This one is clearly sustained 
by the material system. 
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8.2. Quantum States: Diffraction & Interference 
 
A quantum state is mathematically well defined as a linear superposition over 
relevant base states. The way it is articulated to specific material systems is also a 
fundamental aspect to be examined via a number of cases. Interactions with real 
space systems change quantum states. Propagation of resulting quantum states are 
represented in Hilbert space. 

Understanding how to prepare, modulate, change, transmit and record 
quantum states is the task ahead for any quantum mechanical description of 
processes at a Fence. Let us examine some key systems where this interplay 
between real space and quantum configuration spaces can be analyzed with 
simple (and useful) model systems. 
 

 
8.2.1. Single Slit Diffraction  
  
The situation to be discussed corresponds to a quantum state |φ> projected in a k-
base <k|φ> and expanded in the base set of eq. 4.6.1.1, namely {exp(ik.r)} so that 
the representation in real space of this quantum state is the linear superposition 
(Fourier transform, Cf.sect.3.2.4& 3.2.5): 
 

 φ(r) =1/√2π

! 

dk

"#

+#

$  exp(ik.r) <k|φ> (8.2.1.1) 

 
The shape of the quantum state in reciprocal space is the function <k|φ> that you 
have constructed. Now taking those coordinates defining a screen one has to 
evaluate φ(r) on the space point belonging to the screen; this is the wave function 
in coordinate space only.  
 A plane wave state corresponds to a one-frequency quantum state <k|φ> δ(k-
ko) and the real space function becomes proportional to exp(iko.r). In other words 
a propagation direction if fixed and given by the reciprocal vector ko=(k1o, k2o, 
k3o). To get the value of the wave function at a given point in real space one 
simply replaces the corresponding r-vector. Thus, in a plane perpendicular to ko 
this latter vector is constant so that the wave function that is characterized by 
such vector will be always the same. This is the main feature identifying such 
state. 

Let us interpose a plane perpendicular to ko=(0,0,ko) having a slit as indicated 
in the Scheme below.  

The quantum state φ(r), given as a plane wave, would interact with the screen 
including a slit.  The slit is an object in real space while in quantum mechanics 
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focus is on the interaction with the incoming quantum state. The interaction is 
model by an interaction operator, V(Ri)=V(r) as we saw in Feynman’s approach. 
The real space source of material system is assumed to produce one-I-frame 
system at a time; the kinetic energy operator looks like 

! 

ˆ 
K r( )→ -(  

! 

h
2/2Mi) ∇r

2. 
The material system is hence given by the Hamiltonian of eq.(.1.7). Thus all 
elements required to calculate relevant quantum states are at hand. 

 
The key is to understand that the potential standing for the hole scatters 

(interacts with) the incoming state yielding a new linear superposition. The 
interest focuses on detecting this new quantum state. The amplitudes in the new 
linear superposition, say Ψ(r) reflects the detailed interactions. We have to obtain 
the base set able to describe the scattering states. To get at the core of the problem 
assume we have calculated such function in an exact manner; we have the set of 
non-zero amplitudes in the scattering base set. What is the result one ought to 
expect? The result expressed in intensity regime is a diffraction pattern. A whole 
pattern of diffraction related to the scattering of a plane wave state; a distribution 
of complex numbers. That’s it! What about the experiment set up at the 
laboratory?  

At a Fence one has to consider the nature of the detection device. This latter is 
not included among the states obtainable as solutions of eq.(8.1.7) with the 
potential modeling the slit. We know that the virtual pattern should elicit a 
diffraction pattern. Moreover, the system prepared at the source must be 
detectable beyond the screen+slit. This put specific requirements to the slit size, 
which is no problem since we are in real space conditions. For instance, preparing 
beams of fullerenes (C60) you better adjust the slit size so that one can detect this 
material system at the right hand side the diffracting screen. Material system and 
quantum state you cannot get one without the other! 

A common detecting device registers events (clicks) at the surface of a 
specially prepared screen. These events can be collected one-by-one if the 
intensity from the source is controlled to get that result. 
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Suddenly a question pops up from a student in the audience: 
 
Student: Can you tell us where and when a particular event would take place?  
An event, is it not the smashing of the material system on the screen? 
Instructor: You are asking about the material system that supports the quantum 
state!  So far focus is on quantum states. The material system certainly sustains 
the quantum situations but it is not described as a quantum object. Not at all!  
Student: It is obvious that the material system interacts with the slit to get 
dispersed and finally smashes to the screen. 
Instructor: Note that you are implicitly following a classical description via a 
trajectory the material system itself would be following. If the beam were 
monochromatic the interaction would be effective when the incoming system 
touch the slit border within a Δy variation and as the material system impinges 
the elements of the set will be dispersed in directions not correlated to each 
other…  

 

The preceding interventions lead us to the question: what can be said on the 
quantum state interaction with the slit and what type of result one can expect?  
 Well, there are two issues here. One is the exact manner you handle the 
problem of solving Schrödinger eq.(8.1.7) with appropriate boundary conditions. 
The other point concerns the relative intensity of the material system being let 
through. And here comes in the unavoidable “picture” being smuggled from the 
dominant view gotten from our training years, namely, a particle view.  
 First note that at any point on the slit the incoming quantum state is the same 
everywhere; this is a matter of fact. Interaction at points located at equivalent 
positions with respect to the center will produce scattered amplitudes that can 
produce interference with the non-scattered component when superposed on a 
screen sufficiently distant from the slit.   
 Let us “copy” the slit shape onto the detecting surface to help discussions. A 
constructive interference is expected at position corresponding at the center of 
that virtual slit due to the superposition principle. Then, as one moves away that 
center, e.g. along the y-direction, intensity decreases to get at a minimum; 
destructive effects will be followed by another constructive interference; the 
amplitude being a decreasing function as one moves away the center. The picture 
would extend beyond the classic border of the slit. 
 The description quoted above comes out as a result of numeric computing 
with for example a Gaussian slit model. Because quantum mechanics concern all 
possible situations a material system may show, the picture just described portray 
all one can expect to obtain in one theoretic stroke; and this is very difficult to 
swallow if we are thinking in terms of trajectories, in terms of individuals.  
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 It is interesting to remind that a diffraction where radiation impinging on the 
pinhole (slit in our case) is redirected in a well-defined pattern as described 
above. This is then a typical diffraction pattern. 
 
Superb! There is no problem then, exclaims one of the students.  
Instructor: Hold on! Your question about the material system is not to be forgotten… 
 
Look, smashing I-frame systems one-by-one onto the detection screen produces a 
diffraction picture cumulatively. This is an experimental result. Can we 
understand this situation at the Fence? 
 Planck discovered that energy exchanges in lumps (Quanta) between the EM 
field and matter.  
 In general, at the Fence, energy is locally exchanged in lumps. But quantum 
mechanics does not describe the particles as such. It handles quantum states 
sustained by them: Here lies a Gordian knot.  
 Because the event is not included in the QM description the experimental 
situation contains two incommensurable elements. One is the pattern obtained 
from the quantum state. The other is the spot detected, namely a local event. But 
it is only one event versus the whole pattern derived from the wave function. 
 Try to gauge the difference: The pattern obtains from pure quantum 
mechanical elements while the event is the expression of Planck law to the extent 
that energy is exchanged in quanta and occurs locally. The latter is a 
characteristic of Fence phenomena; the former is pure Quantum Mechanics. 
Puzzling, is it not? 
 Obviously, one event is not sufficient to reconstruct the response to a quantum 
state. The event is collected at the detection screen and is created in such a way as 
to stand for the response from a local interaction. By producing a set of copies 
generated under identical conditions (Gibbs-ensemble) of I-frame systems one 
would expect under ideal conditions to reconstruct a diffraction pattern. And it 
does! 
 From the above reconstruction one cannot conclude that quantum mechanics 
is statistical in nature. The statistics has to do with the events. But these latter not 
only depend upon the quantum state but also on the material used to produce the 
event. These later depend upon the interactions between two systems! It elicits 
energy exchanges in lumps at a location. It reflects interactions in real space 
involving energy conservation rules and momentum conservation laws. 
 

E&E-8.1-2. Propagating a quantum state 
Let us take eq.(8.1.2) to discuss the diffraction experiment. There are many elements that 
must be carefully isolated. The system is prepared in the state Ψo(Ri’,to) that cannot 
change in time because it is a datum of the problem; the I-frame will move towards the 
screen and the quantum state propagated by Go(R,Ri(to), t’) until interaction with the 
screen takes place at t’. The quantum state produced by the generator G(R,Ri(t’), t) where 
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(t’) is the time the slit starts scattering and the potential acts. The presentation is 
somewhat hasty. Observe that each time we signal a source then “propagation” is 
complete. This means that the initial plane wave state impinges as such and continues 
later on as such; the slit “starts” shinning at t’ and does it as outgoing base states with 
specific amplitudes. Thus there are: 1) free propagation; 2) scattering quantum state from 
the slit. The total state at the detector is a linear superposition of these two terms. 
Interferences originate in this way. 
 
 

8.2.2. Double-slit experiments 
 
We have now two slits at a given distance on a screen. The source producing the 
quantum state is the same as in the preceding case and it is located at the 
antipodes of the detecting device. For the sake of discussion, the slits are assumed 
to be identical. 
 The first element to be noticed is that the quantum state <k|φ> impinging at 
both slits is identical to the extent it is characterized by k-vector. This is the key 
to understand what it might happen with the quantum state after interaction. As a 
first level of description each slit generate a quantum base state system given by 
|Ψ>1 and |Ψ>2 for which the origin of their sources are shifted at the center of 
each slit (pin-hole) but otherwise identical. The quantum state then takes on a 
linear superposition form: 
 
  |Ψ> = C1 |Ψ>1 + C2 |Ψ>2  (8.2.2.1) 
 
The labels identify the slits in their capacity of being sources. We are interested in 
determining the quantum state at a detecting surface so that we project over space 
configuration: <r|Ψ> and calculate it with an external potential representing both 
slits included in eq.(8.1.7). 
 In the present context, the idea of I-frames is handy. For one now follow the 
quantum states  <r|Ψ>1 and <r|Ψ>2 as if they were “rays” impinging at a given 
point of the detection-screen (D-S). We notice that the path length may differ, the 
choice of the point located at mid-distance from the slit transported to the D-S the 
path length are equal so that the phases will re-enforce: i.e. constructive 
interference.  
 What is that can be expected of the quantum state? Now, at the D-S put the 
origin in between the slits so that by constructive interference maximum 
amplitude is found. Now, moving away along the y-axis the amplitude starts 
diminishing until getting at a minimum. And up again; the pattern repeats for 
positive and negative y-directions. The result is far from being a simple sum of 
independent slit amplitudes. The phases here play a central role.  
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 Once we have computed the quantum state at the surface of D-S one gets a 
virtual-pattern of interference; this means that at zones where no-click is detected 
the amplitude of the quantum state is zero, relative intensities would show up for 
non-zero amplitudes. And as for the preceding case, the quantum mechanical 
result yields in one stroke all possibilities once Axiom 4 is used to make a picture 
in an intensity measurement. 
 

Student: Would you be so kind to tell me which hole the particle went through? In 
all what I have read there is a lot of talk about the paths and from the diffraction 
case the material system must go through in order to get something at the 
detecting surface. 
Instructor: You are right concerning the fundamental role played by particle’s 
paths in current literature. But, instead of giving “an answer” let me tell you 
more about experiments and the way we understand them. 
 
It goes without saying that the material system went somehow through otherwise 
we would have nothing to click with, but the way it evolves in real space is not 
relevant to quantum behavior. But let us examine this issue a little further. 
 First, why do we speak of virtual-pattern of interference? If we lived in a 
world where the calculated pattern could be surface imprinted on one stroke then 
quantum mechanics would have given you that holistic answer. And for what do 
we know it would have been the right one. To this type of sensing we will call it a 
faithful experiment. We cannot get it in one stroke but with may be able to 
approach it as limit. 
 But we do not live in such a world. Planck discovery in the first place and 
many other later on clearly indicate that exchange of energy between systems 
occur locally and in energy lumps, even if these might be small. So, what the 
experiments can tell us? 
 The interference pattern emerges after a one-by-one interaction event at the 
screen. Let us examine this stepwise characteristic. 
 Consider the first spot. It is somewhere on the screen. What is this spot telling 
us? Answ: at that point a quantum interaction with exchange of energy took 
place. So the amplitude of our calculated quantum state must be different from 
zero there and the spot would signal that mapping. The important point for us is 
that no energy exchange, no spot, will show up if the amplitude were zero. It is 
then a first clue as to the shape the quantum state will elicit. 
 What happens with a second spot? Can we predict the precise point where it 
will be seen after the first one? To answer the first query we repeat the preceding 
analysis. The spot tells us that at that position the amplitude of the quantum state 
is different from zero. To the second query the answer is simple: we cannot 
predict the location of the second spot (even knowing the first). But note that 
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there must be a relationship because the initial quantum state is the same at both 
slits and these latter generate identical interactions. 
 We can keep adding spots, the pattern emerging will be the one associated to 
the quantum state at the screen. 
 
Student: Sir, I do not understand why you cannot predict the position of one spot but you 
can predict the pattern of them all! 
Instructor: I urge you to think about this conundrum and come up with one answer; not 
the answer but try to get one by yourself. 
Student: Well, if we knew at least which hole the particle went through one may be able to 
predict the events, perhaps. 
 
Let us see if we can do something for you now. 
 

Whenever one writes down the equation for a quantum state the hypohesis is 
that such a state is sustained by a material system. It is the presence of that system 
which matters not its real space location. The quantum state impinging at the 
holes is exactly the same. Operators 

! 

ˆ V 1 and 

! 

ˆ V 2 that scatter the incoming 
quantum state in the same manner represent the screen and holes; only the origins 
are shifted. Now, assume that for whatever reasons the material system could not 
make it through in a systematic manner. Then, there is no forward scattered 
quantum state. The reason is simple to understand: there is no material support 
for the quantum states. 

It is sufficient that the material system may go through the holes in whatever 
way for the forward scattered state will find its support. This is the nature of 
quantum physics. Classical physics requires a detailed description of trajectories 
and therefore the material system would make it through in a definite manner. 

It is then crystal clear that one cannot impose classical physics constrints to a 
pure quantum mechanical phenomenon. One has to get used to this situation. 

 
 
8.2.3. Event-counting and recording: Pattern reconstruction 
 
To handle this problem we have to incorporate a new quantum layer. A two state 
base set |1> and |0> such that the linear superposition D1|1> + D0|0> can be 
interpreted as follows. If the particle did not pass through the slit then D1=0 and 
D0=1; or the other way around: D1=1 and D0=0 a quantum of energy (I-frame 
carrying it) went through the slit. These are limiting situations that do not belong 
to Hilbert space we started with but would help us discussing some of the issues 
raised by our student. Now, let us construct the quantum state after interaction of 
the impinging quantum state with the two slits: 
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  |Ψ> = C1 |Ψ>1 (D11|1> + D10|0>) +  
  C2 |Ψ>2(D21|1> + D20|0>) (8.2.2.2) 
 
The quantum state (in real space now!) would discriminate any case we can think 
of. The term C1 |Ψ>1 (D11|1> + D10|0>) concerns the quantum state originated at 
slit-1 including the actual I-frame state. 
 Thus, if D11 =1 obviously D10 = D21 = D20 =0. This results because you told 
me the particle went through slit (hole)-1. Then, |Ψ> = C1 |Ψ>1 (D11|1> = C1 |Ψ>1 
|1>; the amplitude C1 is different from zero thereby making it possible for the 
system to exchange energy at the screen if there is a “receptor” there. You see by 
yourself that there is no second amplitude to interfere! Forcing the I-frame system 
to go though slit-1 wipe out interference. What you will get is a diffraction 
pattern from slit-1.  
 Let us analyze this by rearranging the equation above: 
 
  |Ψ> = {C1 D11 |Ψ>1 + C2 D21|Ψ>2} |1> +  
  { D10 C1|Ψ>1+ D20 C2 |Ψ>2 }|0> (8.2.3.3) 
 
This quantum state can be described by using the base set {|1>,|0>} so that if the 
amplitude at  
|1> is different from zero and the quantum state interacts with the detector screen 
then we have the I-frame-state (“particle”) just there and a quantized energy 
exchange may take place.  
 If the amplitude at |0> is different from zero the “particle”-state may receive 
energy from the screen but it cannot transfer energy. 
 Therefore, the answer to the condition put at the beginning is that only a 
diffraction pattern would come out slit-1.  
 Let us see the case D11 =1 all other amplitudes zero one gets C1 D11 |Ψ>1 and 
of course nothing new shows up besides diffraction effects.  
   D11 = D10 = D21 = D20 = 1/√2 ? Then we get the quantum state: 
 
  |Ψ> = 1/√2{ C1 |Ψ>1 + C2 |Ψ>2} |1> +  
   1/√2 { C1 |Ψ>1+ C2 |Ψ>2 }|0> (8.2.3.4) 
 
The possibility for an interference pattern is inscribed along both (detectors) base 
states. For the “normal” case we look at the amplitude of |1>; in this case 
destructive interference will prevent energy exchange. And wherever the material 
system impinges it would carry the full interference information. There is no 
collapse. 
 The eq.(8.2.3.3) would allow you to simulate a number of situations 
concerning the slits interacting with the impinging quantum state. In particular 
one gets an answer to the question of yours. 
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 You can see that at this level of quantum mechanics, the particle itself is no 
matter of concern. For sure it has to go through! That’s all. 
 Is it? The answer is no. So let us dig further and try to define a faithful 
experiment to get the pattern predicted by quantum mechanics. 
 A faithful experiment is the aggregate (union) of faithful events. These latter 
must coincide with a non-zero value of the amplitude at the space position where 
this event is recorded. 
 There are unfaithful events as well. They may be due to defaults on the D-S; 
insufficient granularity; too much noise, not enough energy available, etc. There 
can also be noise at the source and/or at the slits. The events produced under such 
conditions are named unfaithful events. 
 Let N be the number of events recorded after a given time lapse, this number 
can be decomposed as the sum Nf + Nu of faithful and unfaithful events. A 
faithful experiment implies the inequality Nf  >> Nu. Thus, for this type of 
experiment as N increases to a large enough value so that Nf  >> Nu is fulfilled 
one should get the quantum state pattern in the recording. An ideal faithful 
experiment, N =Nf and on the screen you have the pattern determined by the 
quantum state there. 
 Energy exchange between the quantum state and the screen states forces a 
time dependent model: 
 
  |Ψ,t> = 1/√2{ C1 |Ψ>1 + C2 |Ψ>2}C1(t) |1> + 
   1/√2 { C1 |Ψ>1+ C2 |Ψ>2 } C0(t)|0> (8.2.3.5) 
 
Normalization conditions C1(t) and C0(t) makes that at a given time C1(t’)=1 and 
C0(t’)=0 so that in a neighborhood of this particular time the system may act as a 
source of energy while no response from base state |0> can be expected. Of 
course in the next period one may have C1(t’’)=0 and C0(t’’)=1 and our quantum 
state might pick up one quantum of energy. The screen can be prepared so that 
this event wouldn’t happen if one takes such a decision. 
 You note that eq. (8.2.3.5) is a simple product, which means that geometric 
and dynamic factors are separated: 
 
  |Ψ,t> ={C1|Ψ>1 + C2 |Ψ>2} {C1(t) |1> + C0(t)|0>} 
   (8.2.3.5’) 
 Therefore, the pattern of energy transfer is always modulated by the quantum 
state one is trying to experimentally get its pattern. This equation is fundamental. 
The first factor has to do with Hilbert space representation. The second one 
relates to Fence phenomena. 
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8.3. Mirrors and Beam Splitters 
 

Mirrors (M) and beam-splitters (BS) are material devices at a Fence that are able 
to change or modulate quantum states in particular of EM (light) fields by 
specific interaction with. Below a scheme defines some of the basic elements to 
be first used in a Hilbert space representation; namely, it concerns the first factor 
of eq. (8.2.3.5’). 
 The base set (|b1>  |b2>) describes outgoing states originated at cross point 
(vertex) and relates to the input base set (|a1>  |a2>) in manners that are 
characteristic for the particular device. The models assume no losses at the 
vertices. 
 
 
8.3.1. Mirrors 
 
The mirror operator M can be seen as transforming base states for example: 
|a1>M → i|a2> = |b2>; analogously, when applied along the direction |a2> it will 
change |a2>M into i|a1> = |b1>. 
  As a model for these base sets one can take the photon field state containing 
elements: |0>1|0>2, |1>1|0>2, |0>1|1>2 and |1>1|1>2. These base states correspond to 
vacuum in both channels (|0>1|0>2); a 1-photon in channel-1, vacuum in the other 
(|1>1|0>2); vacuum in channel-1 and 1-photon in channel-2 (|0>1|1>2) and finally 
two-photons one for each channel (|1>1|1>2). For the time being retain the one-
photon states so that we can assign: |a1> → |1>1|0>2, |a2> → |0>1|1>2. 
 

 
With this assignment the mirror can be seen as producing a change on the base 
set: 
  (|a1>  |a2>)M1 = (|1>1|0>2   |0>1|1>2)M1 =  
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   (i|0>1|1>2   i|1>1|0>2)  
 
If we take the separate base elements the mirror permutes |a1> into i|a2> or if we 
look at the other component the effect is analogous: M|a2> into i|a1>. 
 Thus, from the scheme |b1> and  |b2> are now rooted at the vertex acting as a 
source point, each one is effected by a phase indicating position of the source 
(vertex) and the reciprocal indicating direction: |b1>→i|a1> and  |b2> →i|a2>. The 
choice made for the present model can be changed producing new models. 
  In terms of quantum states one has to be careful and express them with an 
invariant base set. This can be done if we leave beams directions that are real 
space information implicit and only internal states included. In this case, the 
incoming state is the linear superposition  
 
  (|a1>  |a2>)[1  0]  = 1|a1> + 0|a2>  
 
 The reflected beam is obtained as (|b1>  |b2>)[0  1]. To measure the change one 
expresses the result for example in the initial internal base as follows: 
 
  (|b1>  |b2>) = (|1>1|0>2   i|0>1|1>2 ) = (|a1>  i|a2>) 
 
The final state reads now:  
  (|a1>  i|a2>)[0  1] = (|a1>   |a2>)[0  i] 
 
The beam originated at the vertex has one component equal to i|0>1|1>2 and zero 
amplitude in the initial state |1>1|0>2 .  Thus, using the same base set to gauge the 
change introduced by the mirror the change is as follows: 
 
  [1   0] → [0   i]  
 
or in terms of beams: |1>1|0>2 → exp(iπ/2) |0>1|1>2. 
 With the photon field base set one can discuss elementary detection situations. 
Here intervenes elements that do not belong to the model Hilbert space; now one 
is handling a Fence situation.  
 By putting a detector along b2-axis one integrates over the base function of the 
idle beam <0|0>1 and the quantum state at the detector looks like i|1>2 so that a 
recording in intensity would produce |i|2 at the point on the detector where the 
transition |1>2 → |0>2 is matched by a transition involving one energy quantum so 
the detector itself may show a click or spot. 
 Note that in laboratory life, the detector may miss some physical transitions; 
and the mirror can show imperfections also. These fluctuations are assigned to 
noise and are not included in the present model. In the language developed in 
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previous sections, the former correspond to unfaithful events. The theoretical 
discussion assumes faithful events only. 
 Consider the case where the experimenter decides to send 1-photon beam 
along direction a2 consequently the quantum state is given now by [0  1]. The 
beam approaches the mirror from the opposite direction compared to the previous 
case. The change of base set looks then as: 
 
  (|a1>  |a2>)M2 = (|1>1|0>2   |0>1|1>2)M2 = 
   (exp(+iα)|1>1|0>2   |0>1|1>2 ) = (|b1>  |b2>) 
 
It is not difficult to see that the state after the mirror M2 ought to be [i  0]. 
 The particular model handled above corresponds to α= π/2. The matrix 
representing the effect of a mirror is given as: 

  M= 

! 

0 exp(i")

exp(i") 0

# 

$ 
% 

& 

' 
(  

The labels must consistently be respected according to the scheme above. The 
correspondence is simply given by |b2>= i|a1> and |b1>= i|a2>. 
 
 
E&E-8.3.1 Give a matrix representation to the mirror effect 
Consider the input quantum state (|a1>  |a2>)[ α1  α2] the effect of M2 is given by: 
 (|a1>  |a2>)[ α1  α2] M = (|a1>  |a2>)M [ α1  α2] =  (|a1>  |a2>) [ α2exp(α)  α1 exp(α)] 
For α=π/2 one gets The product (|a1>  |a2>)M = (i|a2> i|a1>) [ α1  α2]. The input state 
chosen corresponds to the column vector [1  0] so that after the mirror the state  
 (i|a2> i|a1>) [ 1  0] = i|a2> + 0i|a1> = i|a2> 
In the base set (|b1>  |b2>) the quantum state looks like [0  1] and the only thing we have 
to do is to revert to the original base set to sense the change. If you do this, the result 
reads: [0  i].  
 
Thus the change of quantum state produced by the mirror can be cast in the form: 
  [1   0]  →  [0  i] 
If you carefully examine the scheme above you can confirm the result by 
inspection. 
 In one word: it is the quantum state that determines the result. The base set 
must be first transformed with matrix M. It is the quantum state vector 
(amplitudes) that controls the possibility for energy exchange. 
 
 
8.3.2. Beam splitters 
 
The beam splitter generates at the vertex two linear superpositions for each b1 and 
b2 directions. If there are two beams each one can be acted independently. First 
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one establishes a relationship between the base sets; details are as follows. Keep 
the model with only one photon in the system. The change produced by the beam 
splitter consist in the production of a linear superposition of the kind: 
 
  |b1> = (1/√2) ( |a1> + i |a2> ) =  
   (1/√2) ( |1>1|0>2  +  i |0>1|1>2 ) 
  |b2> = (1/√2) ( i|a1> + |a2> ) =  
   (1/√2) (i |1>1|0>2 +   |0>1|1>2 ) 
or 
  (|b1>  |b2>) = (|a1>  |a2>) BS  
where 

  (BS) = 

! 

1/ 2 i / 2

i / 2 1/ 2

" 

# 
$ $ 

% 

& 
' '  

 
It is sufficient to get the complex conjugate (BS)* to obtain the inverse 
transformation: 
  (|b1>  |b2>) (BS)* = (|a1>  |a2>) (BS)(BS)* = (|a1>  |a2>). 
 
You can check that  (BS)(BS)* is a unit matrix. 
 The initial base set elements are then given as: 
 
  |a1>  =  (1/√2) (  |b1> - i|b2> ) 
  |a2>  =  (1/√2) (-i|b1> + |b2> ) 
 
The quantum state in the b-base once the input state is known is given by: 
 

  (|a1>  |a2>) 

! 

1/ 2 "i / 2

"i / 2 1/ 2

# 

$ 
% % 

& 

' 
( (  [ α1  α2] =  

  (1/√2) (|a1> - i|a2>)α1 + (1/√2) (-i|a1> + i |a2>)α2 = 
  |a1> (α1 -i α2) (1/√2) + |a2> (α2 - i α1) (1/√2)  
 
Thus, for a one beam coming to the vertex, [α1  0], the quantum state after the BS 
reads: 
  |a1> (α1) (1/√2) + |a2> (- i α1) (1/√2) 
 
For a one-photon field α1=1; the quantum state after BS is the linear 
superposition: 
  {|a1>  - i |a2> }(1/√2)  
 
Thus the name: the initial beam is split in two. The photon field still corresponds 
to one quantum of energy available. 
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 If we look now to the effect a mirror does one can see the superposition of the 
incoming beam with a mirror-state. The amplitudes are reorganized so that the 
state is normalized to one. 
 The key to retain is that, once a quantum state enters along one direction to the 
beam-splitter a two component states will be emerging from the vertex; each one 
being a linear superposition as described above.  
 
 
8.3.3. Phase shifters 
 
This device changed one of the components of a quantum state only by a factor 
exp(-iα). Consider the quantum state  (|k1>  |k2>) [a  b] and put a phase shifter 
interposed before coming to a vertex along the direction of the base state |k2> one 
would get:  
  (|k1>  |k2>) [a  b] →PShifter(-α)→  
   (|k1>  |k2>) [a   exp(-iα) b] 
If you put the shifter along the direction of |k1> then: 
  (|k1>  |k2>) [a  b] →PShifter(-α)→ 
    (|k1>  |k2>) [exp(-iα)a   b] 
The geometry of the phase shifter determines the outcome. It definitely changes 
locally a given quantum state. 
 
 
8.4. Mach-Zender interferometer 
 
The Mach-Zender device discussed here includes two BSs and two mirrors 
intercalated between them as the scheme below shows; so that the quantum states 
generated at the vertex of the mirrors converge to the same point of the second 
beam-splitter (BS2); the quantum states are generated at BS1. Consider the input 
quantum state say [1  0]; the light ray comes from the upper left side in the X-
form. In Figure 5-1 a schematic description includes detectors as well. 
The present Mach-Zender interferometer permits mapping directly the input base 
set (|a1>  |a2>) to the output base set (|b1’>  |b2’>). Thus, by preparing a quantum 
state [1  0] the one-to-one map yields the result (|b1’>  |b2’>) [1  0] = |b1’> +  0 
|b2’>. Only the detector D1 can be activated while D2 stay idle. 

The present Mach-Zender interferometer permits mapping directly the input 
base set (|a1>  |a2>) to the output base set (|b1’>  |b2’>). Thus, by preparing a 
quantum state [1  0] the one-to-one map yields the result (|b1’>  |b2’>) [1  0] = 
|b1’> +  0 |b2’>. Only the detector D1 can be activated while D2 stay idle. 
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For a standard linear superposition state input, [α1  α2] with |α1|2 + |α2|2=1 the 
detectors can respond as indicated by Axiom 4* with relative intensities |α1|2 for 
detector D1 and  |α2|2 for detector D2.  
 Thus, for α1 = 1/√2 and α2= 1/√2 with a linear superposition prepared with 
one-photon the detectors respond by capturing the energy of one photon each 
time. The full pattern elicited by the quantum state indicates that half of the count 
should emerge on each counter. 
 

 

E&E.8.4-1 Calculate amplitudes at detector channels 
The quantum state at detectors according to the scheme corresponds to the linear 
superposition 
 δ1|b’1> + δ2|b’2> 
 
The faithful events at detectors are modulated by the modulus square of the amplitudes. 
The input quantum state is taken to be [1  0] in the base set (|a1 >  | a2>). In order to get a 
more general result let us take the input state [α 1   α2] as we did for the beam splitter 
model. 
 Start from the input quantum state: (|a1 >  | a2>)  [α 1   α2]. First apply BS1: 
 
 (|a1 >  | a2>)(BS)1 = (|b1 >  | b2>) 
Thus  
 (|b1 >  | b2>) (BS)1* = (|a1 >  | a2>) 
 
Operates the left hand side until we get a connection to the base set input to (BS)2. First 
there is a mirror along each path. So that 
 (|a’1 >  | a’2>) = (|b1 >  | b2>)M=i (|b2 >  | b1>)  
Now, 
 (|b’1>   |b’2>) = (|a’1 >  | a’2>)  (BS)2 
  (|b’1>   |b’2>) =  (|b1 >  | b2>)M (BS)2 = (|a1 >  | a2>)(BS)1 M (BS)2 
 
 (|a1 >  | a2>)= (|b’1>   |b’2>)((BS)1 M (BS)2)-1 
 
Taking into account normalization factors the inverse of product is a negative unit matrix. 
This means that except for the sign, the input and the output base set for the present 
device are identical to within a numeric factor. Including the factor the input quantum 
state [1  0] is changed into [-1  0] which means that only the detector D1 will register 
faithful events. D2 detector stays idle. 
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The Mach-Zender discussed here serves to disentangle quantum evolution in 
Hilbert space from faithful events that would take place at the detectors. In few 
words, the whereabouts of the energy quantum (photon) within the network of 
beam splitters and mirrors are not the taken into account as if it were a particle. 
The quantum states given by the varied connecting zones, e.g. from BS1 to M1 
and from here to BS2 can be calculated and the final amplitudes at the detectors 
obtained. It is at this latter point where events (faithful and unfaithful) will show 
up. The symmetry forces base vector |b2> to interact with mirror M2. So the 
matrix calculation is warranted. 
 One question we can investigate is the nature of events that can be induced by 
interposing measuring devices along specific paths. Let us discuss some specific 
situations: 

1) Introduce a detector D3 between BS1 and M1. We assume faithful events 
situation at all relevant places. 

a) Whenever an event is detected at D3 the energy corresponds to 
the photon introduced in the system as input. 

b) A full event can be detected at any one of the detectors D1 and D2 
while no-event shows up at D3. 

c) From a total of N possible events N/2 are detected at D3. 
d) Detectors D1 and D2 get N/4 each in the limit of very large N. 

2) Introduce a detector D3 between M1 and BS2. You can easily see that the 
counting pattern wouldn’t change. 

 
We can safely conclude that given the experimental set explored the photon 
energy (quantum) is never divided along different sections of these devices. But 
there are no elements allowing us to conclude that one photon is “traveling” as it 
were along different pathways. Information about the path is gathered after the 
faithful event took place not before. 
 Faithful events do not belong to Hilbert space. One has to be very careful 
if patterns of faithful events are decomposed into local subsets and use them to 



 CHAPTER 8. MODULATING QUANTUM STATES 
 

21 

reconstruct quantum states that belong to Hilbert space. One would be skating on 
very thin ice! 
 

 

E&E-8.4-2 Neutron interferometry 

We approach here a domain considered to be example of experimental quantum 
mechanics. Let examine some aspects of thermal neutron interferometry. The word 
thermal implies Boltzmann constant energy gauge: kBT = ET. Useful conversion factors 
are: 
  E⇔ (h2/2m)k2⇔(h2/2mλ2)⇔ hν⇔ (1/2) m v2⇔ 
   (1/2) m (d/t)2⇔kBT 
 
The base states of neutron systems |k> can be identified with the energy in any form that 
might be appropriate to the mounted device. Observe de Broglie relation: mv ⇔ h/λ ⇔ h 
k. de Broglie wave length: 
 
  λdB=h/mv= h/√(2mkBT) 
 
 It is widely believed that a fundamental dual nature of thermal and cold neutrons; 
Sometimes a particle, specially at detection, and sometimes a wave when traversing the 
interferometer is beautifully manifested by the highly non-local effects observed in 
neutron interferometry. For us, it is just a quantum physical manifestation of the material 
system. Quantum state propagation when traversing the interferometer (G(R,R’,t) 
propagator), event production with an external system when detected. The nature of the 
event is not commensurate to the quantum system under study so that discussing such 
issues is not free from logical pitfalls. The concepts of particles and waves belong to 
classical physics. Quantum physics is another layer required to describe behavior of 
material systems including electromagnetic radiation. 
 
 

8.5. Quantum states for periodic potentials 
 
At the Fence one encounters crystalline potentials W(Ri) sharing the periodicity 
of a crystal structure. One can imagine an I-frame system periodically repeated 
along the three space directions. We are back to the case examined in Sec.3.2.4-5 
but this time the “length” L of the box correspond to L1L2L3. The material system 
is “repeated” so that local quantum states can be manipulated. The question now 
is to study the collective quantum states if we admit that no material diffusion is 
allowed for. 
 Consider the internal quantum state for which the total mass of the material 
system can be taken to be located at the the respective I-frame. The boxes are 
periodically repeated; a new I-frame permits defining their origin coordinates. Do 
not mix this system with the internal states that are not coupled to the collective. 
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This must be done if one wants to build a framework where base states can be 
obtained. 
 Material systems such as atoms and molecules present some peculiarities. Let 
us mention a few of them. The nuclear quantum states depend upon the electronic 
state and for lowest base states of the latter the nuclear system can be taken at an 
average (fixed) position. This configuration can be periodically repeated so that 
one may have a periodic ionic background or it may simply be a neutral 
electronuclear state.  The latter model may correspond to molecular/atom crystals 
while the former may produce ionic crystals. Another situation would correspond 
to an ionic background potential with collective electronic states such as in 
metals. 
 The simplest case corresponds to a box material system with global spin state 
S=0. These systems show a so-called closed electronic shell structure. One simple 
case: Na+(S=0) Cl-(S=0). 
 A more interesting case occurs for a “box” system that shows unpaired state 
electrons (S≠0). The core is taken to have a closed shell structure for simplicity so 
that it will constitute a crystal ionic potential for the electronic part. There will be 
two classes of extreme situations. In the first, the quantum states belonging to 
each box do not interact with the neighbors. This may correspond to a Mott-
insulator state. The second extreme will be the equivalent to “free-electron-states” 
with quantum states extending over the whole crystal. All envisageable cases can 
be found for real systems. In particular there is a set where only nearest neighbor 
interactions are sufficient to describe electronic properties (Hubbard model). 
Here, focus is first put on recent developments. 
 
  
8.5.1. Cooling and Trapping 
 
 Cooling and trapping of atoms is a current field of development: Bose-
Einstein condensates are the starting points for the study of the so-called many-
body physics. Molecular and fermionic super fluids are a hot research topic. 
Order can be induced in such systems with the help crossed laser beams. 
Recently, a trapped Yterbium atom cloud condensate was placed at the crossing 
point of three mutually perpendicular laser standing waves; these waves form a 
kind of optical lattice leading to a periodic potential for the atoms that has a 
simple cubic symmetry. This symmetry is superposed to harmonic confinement 
of the trap. Physicists can play now so as to move the quantum state from an 
ordered crystal-like to a super fluid (disordered-like).  The quantum phase 
transition was experimentally detected (Cf.Moritz & Esslinger, Physics 2, 
(2009)31 and references therein). 
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8.5.2 Building crystals from I-frame systems 
 
Crystals are objects found in real space; these are solids displaying specific types 
of symmetry. The model of an ideal crystal obtains by infinite repetition of 
identical structural units in real space. Symmetry is related to geometry 
(symmetry groups), structural units to specific material systems and crystal 
properties to collective quantum states. 

First, consider geometric aspects. Each structural unit, a Bravais cell, is made 
of finite number elements. The structural unit is called a (crystal) basis in solid-
state language. Repeating this basis in space a Bravais lattice obtains.  

The elements of structural units are represented by I-frame systems. Thus, 
from the very beginning real and quantum spaces are brought together. The 
corresponding I-frame origin and orientation are planted in real space as we 
discussed in Chapter 4. The fundamental model of a Bravais lattice is an infinite 
arrangement of I-frame quantum systems (I-F-QS); the material composition of 
each I-frame is kept fixed, quantum states are the variable elements. 

In the business of constructing base sets, again, the quantum base states for I-
frames are kept without mixing. Crystal properties would emerge once 
interactions are allowed for letting the I-F-QS to mix according to the cases under 
study. In this broad perspective, band structures develop and can be organized 
with the quantum numbers associated to base sets of the I-frames. Also, new 
phenomena can be described, e.g. solid state chemical reactions, but for now we 
consider a series of models starting from the simplest case to fix linguistic issues 
and following more complex cases later on. But first a simple illustration to guide 
this abstract discussion that is based on General Chemistry material. 
 

 
E&E.8.5.1-1. Discuss possible states of a crystal formed with one sodium atom and 

one chlorine atom  

Dispense yourself from the detailed electronic states for the time being. The base states of 
each I-frame system contains elements such as: 

 Na: |(Ne-core)3s>, … , |(Ne-core)3s0 k3p>,…,etc. 
 Cl: |(Ne-core)3s23p5>,…, |(Ne-core)3s23p4 k3s>…,etc. 

The symbols k3p and k3s stand for base states at the continuum just above the ionization 
limit of corresponding parent and holes at 3s0 and 3p0, respectively. For chlorine, without 
external sources there is no way to create a negative ion structure as it is possible to 
obtain positive ions. The crystal basis must be extended to treat the two I-frame systems 
as if they were a “supermolecule” by including quantum states of the negative ion: 

 Cl-1: |(Ne-core)3s23p6 k3s
0>,…,|(Ne-core)3s23p5 k3s> 

The states in the continuum including explicitly the holes read: 
 Na: |(Ne-core)3s k3p

0 >, …,|(Ne-core)3s0 k3p>,… 
 Cl: |(Ne-core)3s23p5 k3s

0 >,…,|(Ne-core)3s23p4 k3s> 
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Form the new base states: 
 |Φ1>=|(Ne-core)3s k3p

0 >⊗|(Ne-core)3s23p5 k3s
0 >  → Na Cl 

 |Φ2>=|(Ne-core)3s0 k3p> ⊗|(Ne-core)3s23p5 k3s
0 >  → Na* Cl 

 |Φ3>=|(Ne-core)3s0 k3p
0>⊗|(Ne-core)3s23p5 k3s> → Na+ Cl-* 

|Φ4>=|(Ne-core)3s0 k3p
0>⊗|(Ne-core)3s23p6 k3s

0> → Na+ Cl- 
The base functions Φ1 and Φ2 belong to the initial atomic I-frames while Φ3 and Φ4 
belong to the super-molecule, which includes new states related to the negative and 
positive ions; here, sodium system acts as a source of electrons for the chlorine system; 
|Φ4> contains a hole state at sodium frame and this is another way to signal a positive 
charge state. 

The crystal basis has quantum states where, for the time being, interactions with the 
remaining crystal are suppressed. These states map to the linear superpositions: 
 |Ψ> = C1|Φ1> + C2|Φ2> + C3|Φ3> + C4|Φ4> = 
  ( C1  C2  C3  C4) • [|Φ1>  |Φ2>  |Φ3>  |Φ4>]  
Since the initial point is a pair of atoms, the quantum state looks like the row (1  0  0  0). 
There is amplitude at the lowest energy base state.  

The point is that the energy of base states for the ionic forms must be sensitive to 
external electric field interactions. Thus, switching on the interactions with the whole 
crystal the energy level of the ionic form |Φ4> becomes lower than the neutral pair; 
remember that we handle quantum base states not objects. Therefore, in the crystal 
including Coulomb interactions the quantum state would look like (0  0  0  1), in other 
words crystal effects would induce the ionic form amplitudes in the present approach. In 
the standard theory, this corresponds to Madelung’s potential effect. 
 Note that by increasing the base states including electron transfer base states (e,g, 
|Φ4>), a large number of physical and chemical states can be examined from a unified 
viewpoint. 
 
 

Because the material systems entering the Bravais cell presents a constitution 
of, say, n-electrons and m-nuclei, permutation symmetry that could be imposed 
among the elements of repeating basis, or inside the elements included in the 
crystal basis, is not taken into account yet; this symmetry is to be considered on a 
case-by-case only. If the elements of the crystal basis are distinguishable, as a 
first step, the system state taken as simple product base sets without permutation 
symmetry.  

By taking I-frame systems as models, the assumption is that base state allows 
for a clear mass distribution of the total mass sustaining the I-Frame QState so 
that a geometric arrangement would make sense to start building crystal base sets. 

Why would it be possible to postpone symmetrization? The reason is simple. 
We are not handling the systems as collection of particles but treating collections 
of base states in view of determining quantum states amplitudes of linear 
superpositions; these base states may well be properly symmetrized. 

Now, the form of the Hamiltonian, as far interactions between I-frame 
systems are concerned, is left unspecified except for crystal symmetry invariance; 
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interactions are included at places where their role might be more clearly 
perceived.  

The zero-order model starts from the set of non-interacting I-frames. Thus, 
there are by construction all those sets of complete base functions the I-frame 
systems contribute including electron transfer base states; particular total mass 
distributions associated to the real space I-frames are implicit, the crystal basis in 
Bravais cells takes the place of equilibrium geometry.  

The geometric elements required to construct a language and characteristic of 
solid-state physics are summarized in what follows. 

Identical structural units, the primitive unit cell, are translated in space with 
the help of three linearly independent vectors a1, a2, a3; i.e., they are not collinear, 
the product |a1⋅ a2∧ a3| = VPUC yields the volume of the primitive unit cell (PUC); 
these are the primitive vectors.  

The lattice is defined with these primitive vectors; in a model crystal, a point 
in real space, say x’ by definition must exactly have the same surrounding that the 
point x obtained after adding the vector X(n1, n2, n3)= X(n) according to: 

 
 x = x’ + n1 a1+ n2 a2+ n3 a3 = x’ + X(n1, n2, n3) =  
  x’ + X(n) (8.5.1.1) 
 
The selection of three integers n1, n2, n3 is arbitrary. 

Thus, lattice plus basis generate the crystal structure. This is purely geometric 
except that now the basis would contain a great deal of quantum information via 
the I-frame. This is a typical example of Fence system. 

Consider a basis with a finite number of I-frames (equal or different). Two 
indices are required to signal the position of an I-frame belonging to the n-th PUC 
and being the l-th I-frame in the crystal basis: X(n, l).  Thus, 

 
 X(n, l) = X(n1, n2, n3) + X(l1, l2, l3) =  
 X(n)+ X(l) (8.5.1.2) 
 

The origin is given by X(n=0) = 0 and the position of the j-th I-frame by X(0, j) 
in the crystal basis. The first index labels a given PUC origin; the second does it 
for the I-frame origin. The system has discrete translational symmetry; hence 
reciprocal spaces can be constructed. 

The reciprocal primitive lattice vectors are: b1, b2, b3. They are given by: 
  

    b1 = 2π  a2∧ a3/ VPUC; b2= 2π  a3∧ a1/ VPUC;  
 b3= 2π  a1∧ a2/ VPUC .(8.5.1.3) 
 
The sets of a and b are orthogonal: 
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 ai· bj = 2π  δij   (8.5.1.4) 
 

Equivalent points in reciprocal space are defined with a vector simply given as: 
 
    G(m1,m2,m3)= m1b1+m2b2+m3b3 = G(m).  
 
The triad m1, m2, m3 are integers defining the G-vectors. The scalar product X·G 
can easily be calculated resulting in an integer multiplied by the factor 2π that 
comes from the definition (8.5.1.3). Thus, G(m) · X(n) = 2π p, where p equals the 
integer n1m1 + n2m2 + n3m3. It follows that  
 

 exp(i G(m) · X(n)) =  
 exp(i 2π p) = cos(2πp) + i sin(2π p) = 1  (8.5.1.5) 
 

There is nothing more than the properties of circular functions. 
Consider functions f(x) that have the periodicity of the lattice. They can be 

written as linear superposition of functions in the reciprocal space f(G): 
 

   f(x) = ΣG exp(i G · x) f(G)   (8.5.1.6) 
 
The function f(x) is left unspecified; it may correspond to a global state assigned 
to the I-frame; eq.(8.5.1.6) elicits a general property of periodic functions.  

The zero-model puts at our disposal three Cartesian displacement vectors for 
each I-frame and possible global angular momentum of the rigid I-frame. Thus, a 
quantum system of 3s degrees of freedom with respect to a laboratory frame 
would express 3s-6 degrees of freedom in the I-frame (3s-5 for linear cases); thus, 
when defined with respect to an I-frame the system’s 3s degrees of freedom 
contains a redundant subset and appropriate changes of variables may help 
eliciting those 6 degrees of freedom belonging to the global I-frame (e.g. centre 
of mass, inertia tensor). At the Fence, a free I-frame may behave as a classical 
mechanics system (Cf.Chapt.4) but it can also cloak itself as a quantum system; 
actually, this latter statement is not accurate because it will depend whether a 
measuring device is set up that responds to the quantum state of the I-frame or 
another sensing the global mass state, but this is an experimental planning 
decision belonging to a social determination.  

Let x(n, l) be a displacement of the l-th I-frame origin in the n-th Bravais 
cell that plays the role of fixed geometry. It is apparent that after a displacement 
of the PUC origin by a vector L one should have the equality: 

 
  x(n+L, l) = x(n, l)   (8.5.1.7) 
 



 CHAPTER 8. MODULATING QUANTUM STATES 
 

27 

Consider an infinitely extended crystal which is partitioned into units containing 
L1xL2xL3 = N unit cells. By construction, these new units, sub-crystals as it were, 
fill all space; these parallelepipeds have edges defined by the vector L1a1, L2a2, 
L3a3. Any one of these sub-crystals can play the role of a physical crystal.  
 We sketch the study of vibration properties of systems submitted to these 
periodic boundary conditions also known as Born-von Karman boundary 
conditions.  
 Applied to the components of the displacement vector eq.(8.5.1.7) lead to: 
 
    exp(2πi K · L1a1) = exp(2πi K · L2a2) =  
  exp(2πi K · L3a3) = 1 (8.5.1.8) 
 
The vector K fulfilling these equalities can be written with the help of G(m) as: 
 
  K = (1/L) G(m) =  
  (m1/L1) b1+ (m2/L2) b2+ (m3/L3) b3 (8.5.19) 
 
This construction permits moving from the basic case L1xL2xL3 = N =1 to 
situations where the number of unit cells N can be a large number.  
 
 
8.5.2. Brillouin zone and Wigner-Seitz primitive cell 
 
The continuous translation group in real space was examined in Chapt.2, 
conservation of linear momentum p results from space homogeneity; here 
translations are discrete thereby entailing a specific reciprocal space 
representation: k-space. 
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E&E-8.5.2.2-2. Brillouin zones for linear and square lattices 

 Caption: The center of Brillouin Zone (BZ) is label with 
Γ; symmetry operations permit identifying some critical points. Along the kx-axis there is the 
intersection X with the square edge and the mid point Δ. On the diagonal there is the point M and 
halfway Σ, these points are on a symmetry axis. The points at the limit of the BZ that do not 
coincide with X and M is denoted Z. The four vertices are equivalent points. There is degeneracy 
associated to points transforming into equivalent ones under symmetry operations. For X and M 
there are four operations leading to equivalent points: the axis C4 applied twice (C4

2) perpendicular 
to the plane (kx,ky);The interior points do not have any singularity. 
 
 
One can restrict the values of k to one reciprocal lattice cell. The reason to do this 
is that for any point outside that cell, there exists a point inside within the cell 
connected to it by a reciprocal lattice vector that we call K; this is related to G-
vectors as seen in eq. (8.5.1.9). Thus, there is a map between the primitive unit 
cell and the corresponding reciprocal lattice cell. For practical considerations one 
can define equivalent regions in both k-space and direct space that show a greater 
geometric symmetry. The constraint in k-space is that a reciprocal lattice vector 
cannot relate two points inside the chosen region; this is the first Brillouin cell. In 
direct space, the corresponding space is known as Wigner-Seitz primitive cell.  
 For the simplest cubic case, a Wigner-Seitz primitive cell obtains 
whenever in a Bravais lattice nearest neighbors surrounding each I-frame are used 
to define a polyhedral figure. Draw mid-planes perpendicular to the straight lines 
drawn between the neighbors and the origin the volume enclosed defines this 
primitive cell. This cell displays the symmetry of the Bravais lattice. The cell 
includes a complete crystal basis in a closed volume. The pictorial appearance of 
a unit cell and a Wigner-Seitz cell is different. 
 If we perform the above operations in reciprocal space the Brillouin zone 
obtains around k=0. The Wigner-Seitz primitive cell mapped into reciprocal 
space is the first Brillouin zone. 
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8.5.3. Lattice planes 
 
For a particular Bravais lattice, any plane defined by three non-collinear points 
corresponds to a lattice plane. By translational symmetry of the Bravais lattice, 
any such plane contains infinite many lattice points that form a 2-D Bravais 
lattice. Designate the shortest distance between the planes belonging to a given 
family by d. For any reciprocal vector K, there is a family of lattice planes; the 
planes being at distance d; the length of the shortest reciprocal lattice vector 
parallel to K is 2π/d. 
 The Miller indices of a lattice plane are the coordinates of the shortest 
reciprocal vector normal to the plane referred to a specified set of primitive 
reciprocal lattice vectors. In short, a lattice plane with Miller indices h,k,l is 
perpendicular to the reciprocal vector K= hb1+kb2+lb3 so it is contained in the 
plane K⋅r=constant. Let this plane intersect the axes at the points x1a1, x2a2, x3a3 
so that K⋅r=constant=F is fulfilled with r= x1a1+ x2a2+ x3a3. Then x1= F/2πh, x2= 
F/2πk and x3= F/2πl; the 2π factor comes from eq.(8.5.14). Thus, the intercepts of 
a lattice plane with the crystal axes are inversely proportional to the Miller 
indices. 
 Consider a plane with intercepts [x1 x2 x3] with the cubic axes and calculate the 
Miller indices. Take the example [1  2  4] where 2 = -2, the reciprocal numbers 
required to get Miller indices yield 1,  1/2,  1/4, by definition the indices are 
integers so that now multiply by 4 to get the indices (4  2  1) that are Miller 
indices sought.  
 
 
8.5.4. Lattice translation symmetry and band structure 
 
Consider a k-vector defined as: k = κ1 b1+ κ 2 b2+ κ 3 b3, as discussed above, take 
a crystal composed of a large number of unit cells, Nj in the direction aj (j=1,2,3). 
Then N= N1 N2 N3 stands for the total number of unit cells that can be of order 
1023. Born-von Karman boundary conditions are appropriate to examine 
periodicity, they are defined by: 
 
 fk(x)  =  fk(x + Nj aj). (8.5.4.1) 
 
We examine now the translation symmetry as applied to the base vectors |x> by 
the operator 

! 

ˆ T (Nj aj). From eq.(8.5.13.1) we can see that: 
 
 

! 

ˆ T (Nj aj) |x> = | x + Nj aj > (8.5.4.2a) 
 
This is a translation of the origin belonging to an I-frame. 
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 The effect translation symmetry has on the energy levels of the zero-model is 
the issue. Take a primitive unit cell with one I-frame that seen from the laboratory 
has a mass M at the origin. 

For a higher level model, the remaining I-frames systems are interacting with 
the one selected by us; assume that such effect can be model with an external 
potential V(x). Together with 

! 

ˆ K = (  

! 

h∇x )2/2M, the kinetic energy operator, define 
the Hamiltonian: 

! 

ˆ H  = (

! 

ˆ K + V) = (h/i)∇x )2/2M + V(x) = 

! 

ˆ H (x). The potential has 
the crystal symmetry by fulfilling an equation similar to (8.5.13.1). We are in the 
business of constructing base state for the I-frame as such. 

The operators 

! 

ˆ H (x) and 

! 

ˆ T (Nj aj) commute and, consequently can be 
simultaneously brought to a diagonal form. The problem is to find simultaneous 
eigenvectors. To extract basic aspect to this problem let us consider a 1D model. 

 Consider one I-frame per Bravais lattice model by a 1D array separated by a 
distance a: V(x±a) = V(x). Take the base ket |x> and define the unitary translation 
operator 

! 

ˆ T (a) by: 
 

! 

ˆ T (a) |x> = |x+a> (8.5.4.2b) 
 
The Hamiltonian is invariant under the translation, i.e. 

! 

ˆ T 

! 

ˆ H  = 

! 

ˆ H 

! 

ˆ T . Note that 
because 

! 

ˆ T  is unitary (not hermitean) the eigenvalues are complex numbers of 
unit modulus.  

The energy eigenvectors for the I-frame origin located at position n is 
indicated by |n>. The operator 

! 

ˆ T (+a)|n> shifts the origin to |n+1>, while 

! 

ˆ T (-
a)|n> = |n-1>. Note that 

! 

ˆ T (na)|0> = |n>, the base vector |0> is not the vacuum but 
the system at the origin. Remind that with or without interaction, an identical 
system is found at each location the energy of them is independent from the 
location. 

We take now the I-frame at its ground state energy Eo and take again the zero 
order case such as each I-frame system has no interaction with the surrounding, 
namely, V=0.  Naturally, all positions along the line have the same energy Eo. 
Thus, 

! 

ˆ H |n> = Eo |n> but 

! 

ˆ T (+a)|n> = |n+1>. In words, the vector |n> is not a 
simultaneous eigenvector of these two operators. The issue is the construction of 
such a vector. One way to do this is to construct a linear combination via a 
parameter w: 

 |w> =  

! 

n="#

#

$ exp(inw) |n> (8.5.4.3) 

 
The parameter w is real and must vary between –π ≤ w ≤ π. This is a quantum 
state over the complete base set of crystal positions; all base states have the same 
energy Eo. Let us apply 

! 

ˆ T (+a) to this ket and obtain the new vector 

! 

ˆ T (+a)|w>: 
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! 

ˆ T (+a)|w> = 

! 

ˆ T (+a)

! 

n="#

#

$ exp(inw) |n> =  

 

! 

n="#

#

$ exp(inw) 

! 

ˆ T (+a)|n> =

! 

n="#

#

$ exp(inw) |n+1>. 

 
At this point replace n by n-1 in the last equality. You can do this because n is a 

dummy index. Rearrange the sum; you get:

! 

n="#

#

$ exp(i(n-1)w) |n>. A simple trick 

permits rewriting this as exp(iw)

! 

n="#

#

$ exp(inw) |n> so the final result is that |w> is 

eigenvector of the translation operator with eigenvalue exp(iw): 
 

! 

ˆ T (+a)|w> = exp(iw) |w>   (8.5.4.4) 
 
Besides, this equation confirms that the operator 

! 

ˆ T (+a) is unitary.  
Calculate now the energy associated to this linear superposition engaging all 

sites in an infinite linear lattice: 

! 

ˆ H |w> = 

! 

ˆ H 

! 

n="#

#

$ exp(inw) |n> =

! 

n="#

#

$ exp(inw) 

! 

ˆ H |n>. 

 
Because all elements have amplitudes at the ground state only the result is: 
 

    

! 

ˆ H |w> = Eo

! 

n="#

#

$ exp(inw) |n> =  

 Eo |w>  (8.5.4.5) 
 
Therefore, the linear superposition eq. (8.5.4.3) is a common eigenvector for the 
operators 

! 

ˆ H  and 

! 

ˆ T (+a). 
 The model Hamiltonian expressed in the base {|n>} at the site n simply reads 
as Eo|n><n| that is our zero-model for a linear chain. Unless the site elements 
interact among themselves the base functions are of no interest.  
 Let us introduce interactions between nearest neighbors and check the 
resulting energy spectra. Now, the Hamiltonian has off-diagonal elements: 
<n|

! 

ˆ H |n±1> = -Δ. The interaction parameter Δ will be used to represent varied 
situations of interest. Thus, with this new Hamiltonian one gets: 
 
 

! 

ˆ H |n> = Σm <m|

! 

ˆ H |n>|m> =  
  Eo |n> - Δ|n+1> - Δ |n-1> (8.5.4.6) 
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The model implies that matrix elements <n±m|

! 

ˆ H |n> are all zero except when m 
equals ±1 or zero. Now we need calculate 

! 

ˆ H |w>. This is done in E&E-8.5.4-3 
below. 
 
E&E-8.5.4-3 Explicit calculation of 

! 

ˆ H |w> 
This calculations use the properties associated to linear operators (Cf.Chapt.1). Thus, for 
a Hamiltonian like the one introduced in (8.5.4.6) transform eq.(8.5.4.5): 

 

! 

ˆ H |w> = 

! 

n="#

#

$ exp(inw) 

! 

ˆ H |n> =  

  

! 

n="#

#

$ exp(inw) Σm <m|

! 

ˆ H |n> |m>. 

 
The sum over m is zero except for the nearest neighbour terms: 
 
 {exp(inw) <n|

! 

ˆ H |n>|n> + exp(i(nw) <n+1|

! 

ˆ H |n>|n+1> + 
  exp(inw) <n-1|

! 

ˆ H |n>|n-1> }= 
 {exp(inw) Eo |n> - exp(i(n)w) Δ |n+1> - exp(i(n)w) Δ |n-1> }. 
 
Now, inserting this equality one gets 

 

! 

ˆ H |w> =  

! 

n="#

#

$  exp(inw) Eo |n> -  

 

! 

n="#

#

$  exp(i(n)w) Δ |n+1> - 

! 

n="#

#

$  exp(i(n-1)w) Δ |n-1> } 

 
The second and third sums are reshuffled by changing the index n by n-1 in the second 
and n by n+1 in the third because they are dummy indices, the result is 
 

 

! 

n="#

#

$  exp(inw) { Eo – Δ exp(-iw)  – Δ exp(+iw)} |n> =  

  E(w) |w> 
 

The term in curly brackets does not depend upon n and is taken outside the sum symbol: 
 

 { Eo – Δ (exp(-iw) + exp(+iw))}

! 

n="#

#

$  exp(inw) |n> =  

  E(w) |w> 
 

Calculate the term  (exp(-iw) + exp(+iw)= cos(iw)-isin(w) + cos(w)+isin(w) = 2 cos(w) to 
get the equation below. Thus,  
 
 

! 

ˆ H |w> = E(w) |w> = (Eo – 2Δ cos(w)) |w>. 
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The energy as a function of w reads: 
 
 E(w) = (Eo – 2Δ cos(w))    (8.5.4.7) 
 
As this parameter w changes from π to –π we obtain an energy band varying 
between Eo – 2Δ and Eo + 2Δ. 
 This is a remarkable result depending upon the translation symmetry where 
the interaction Δ actually defines the splitting width. But there is more. 
 Equate now the parameter w=ka to get the final link with lattices. The range 
where k can vary is –π ≤ ka ≤ π or –π/a ≤ k ≤ π/a. This corresponds to the first 
Brillouin zone. We have then a dispersion relation or energy as a function of k: 
 E(k) = Eo – 2Δ cos(ka)   (8.5.4.8) 
 
The allowed energy values form a band. Also, there is a cut-off |k|=π/a. 
 The effect of translational symmetry for interacting I-frames systems is to 
produce the rupture of energy degeneracy leading to a band structure at the first 
Brillouin zone. The width of this band is 4Δ. This type of splitting applies to any 
energy level of the isolated I-frame system where now the internal (quantum) 
structure is about to play a central role. 
 The band structure is sometimes referred to as lattice energy levels. A narrow 
band, e.g. Δ very small, the system would correspond to I-frames states fully 
degenerate. A model situation where the I-frame systems are at infinite distance 
would show no interactions and the spectra will correspond to the spectra of the 
isolated I-frames quantum systems. Thus, in a crystal one would expect band 
structures whenever the matrix elements <n ±1|H|n> are different from zero. 
 The crystal base function reads now as: 
 

 |k> =  

! 

n="#

#

$ exp(inka) |n> (8.5.4.3’) 

 
This is a Fourier transform that can be inverted to get the site base functions |n> 
as linear combinations over the k-waves. 
 The I-frame concept is extremely general. The fundamental band structure 
imposed by translation symmetry is hence valid for mass fluctuations (vibrations) 
about the rigid Bravais lattice structure as well as for the quantum systems 
associated to the I-frames. Unfortunately, here is not the place for extensive solid-
state physics discussions; however, a couple of issues that are central to the study 
of quantum technologic systems are to be examined.  
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8.5.5. Phonons 

 

The model is adapted by introducing the vector u(n,l) describing displacements 
of the l-th I-frame from the n-th cell; the crystal structure provides a fixed 
framework. Consider the case of one I-frame by Bravais cell; thus, u(n,l) 
simplifies into u(n) that stands for a displacement coordinate associated to the 
mass M. The zero-order model corresponds to a set of harmonic oscillator 
fluctuating independently from each other. This is Einstein model for a crystal. 
 The coordinate vectors u(n)=un for a model with one I-frame per unit cell is 
transformed into a collective (phonon) coordinates Qk using the lattice ansatz 
equivalent to eq. (8.5.4.3’): 
 
 un = (N)-1/2 Σk Qk exp(ikna) (8.5.5.1a) 
 
The inverse relation reads: 
 
 Qk = (N)-1/2 Σn un exp(-ikna) (8.5.5.1b) 
 
Periodic boundary conditions un = un+N lead to N allowed values for the wave 
vector k, the distance between two nearest neighbours is indicated by a. Thus, 
 
 k= 2πn/Na;  
 n= 0, ±1, ±2, …,±(N/2 -1), +N/2 (8.5.5.2) 
 
The limit values of k being ±(N/2) 2π/aN they correspond well to the first 
Brillouin zone. The dynamical part requires the introduction of linear momenta 
with transformation property: 
 
 pn = (N)-1/2 Σk Pk exp(-ikna)  
 Pk = (N)-1/2 Σn pn exp(ikna)  (8.5.5.3)  
 
E&E-5.5.2-4. Find an expression to the commutator [Qk, Pk’] 
Introducing the definitions with adapted indexes one obtains: 
 [Qk, Pk’] = N-1 [Σn un exp(-ikna), Σn’ pn’ exp(ik’n’a)] =  
 N-1 Σn Σn’ [un, pn’] exp(-ikna)exp(ik’n’a) = 
 N-1 Σn Σn’ [un, pn’] exp(-i(kn-k’n’)a). 
 
 
The commutator [Qk, Pk’] is thus expressed as linear superpositions over local 
commutators  [un, pn’]. 
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The quantization rules require that:  
 
 [un, pn’] = ih δ(n,n’) (8.5.5.4) 
 
Then: 
 [Qk, Pk’] = N-1 ih Σn exp(-i(k-k’)na) =  
  ih δ(k,k’) (8.5.5.5) 
 
The Hamiltonian for the linear chain motif in k-space is given in the form: 
  H = Σk Hk =  
  Σk {(1/2M) Pk P-k + (1/2)Mωk

2 Qk Q-k} (8.5.5.6) 
 
The equation of motion read: 
 
 

! 

˙ ̇ Q k +Mωk
2 Qk = 0 (8.5.5.7) 

 
Observe that the operator symbol (a caret ˆ) is removed to simplify the 
discussion. But they are operators so that we need base states to construct the 
quantum states to sense the crystal response. Actually, what is relevant now is the 
state of excitation the system can be, and for that we need a Fock space similar to 
the one used in quantizing the electromagnetic field. We know that the energy is 
quantized according to: 
 
 εk = (nk + ½) h ωk  (8.5.5.8) 
 
Fock space is hence constructed along lines similar to those found in Sect.6.2. 
Here, operators for creation and annihilation of energy quanta are designated as 

! 

ˆ b  and 

! 

ˆ b 
† instead of 

! 

ˆ a  and 

! 

ˆ a 
† used for the electromagnetic field. All equations 

derived there have the same form here. In particular the phonon Hamiltonian 
takes on the form: 
 
 

! 

ˆ H ph = Σk  (h ωk)(

! 

ˆ b k
†

! 

ˆ b k + ½) (8.5.5.9) 
 
The fundamental thing now is the construction of a base set. This is given as 
direct products of base states for each k-level, although now a simplified notation 
is used if many modes are present. Again, zero available excitation at a given 
frequency is named the vacuum with the property: 

! 

ˆ b k|0k> = 0. The number of 
excitations of a given frequency is represented by the base vector |nk>: 
 
 (1/√nk!) (

! 

ˆ b k
† )n |0k>  = |nk> (8.5.5.10) 
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An arbitrary quantum state for the transverse phonon field, say |Ξ>, is represented 
by a row vector of complex numbers: <n k|Ξ> : 
 
 |Ξ> = Σk <n k |Ξ> |nk > (8.5.5.11) 
 
The average energy for this state is given by <Ξ|

! 

ˆ 
H ph|Ξ>. The result is: 

 
 <Ξ|

! 

ˆ 
H ph|Ξ> = <Ξ| Σj (h ωj)(

! 

ˆ b j
†

! 

ˆ b j + ½)|Ξ> = 

 Σjkl <nl|Ξ>*<nk|Ξ>(  

! 

hω j)<nl|(

! 

ˆ b j
†

! 

ˆ b j +1/2)|nk> 
  (8.5.5.12) 

The constant term: <nl|(1/2)|nk> = (1/2)δlk; and <nl| (

! 

ˆ b j
†

! 

ˆ b j) |nk> the occupation 
number equals <n l|

! 

ˆ N j|nk > = nj <nl|nk> δjk, thus there are two Kronecker delta, δjk 
δnl,nk eliminating two sum signs to get the average energy for the quantum state 
|Ξ> given by: 
 <Ξ|

! 

ˆ 
H ph |Ξ> =  

  Σj |<nj|Ξ>|2(  

! 

hωj)(nj+1/2) (8.5.5.13) 
 
The running index j indicates the k-states intervening in the quantum state. Only 
those base states showing non-zero amplitude contribute to the total energy.  

It would be adequate to go back and read E&E-5.2-2 concerning field 
magnitudes for defined quantum states. 

The average energy depends upon those amplitudes that are different from 
zero in the quantum state via |<nj|Ξ>|2, the squared amplitudes. The energy that 
can be exchanged at the Fence amounts to: nj(  

! 

hωj). But, in the expression for the 
average energy this degree of freedom contributes only a fraction |<n j |Ξ>|2 (  

! 

h  ω j 

) n j. Caution is required because one may mix up two different things: nj(  

! 

hωj) is 
a quantity characteristic of Fock space while  |<n j |Ξ>|2 tells what the relative 
response intensity the quantum state show if a probe were used to measure the 
quantum state. Intensity response belongs to real space or Fence space. As a rule 
of thumb, keep yourself handling thing in one domain without mixing theoretical 
magnitudes belonging to another realm, unless you do it with full control.  
 The similarities between a phonon field and the t-EM field stop when we look 
at the nature of fluctuations. Remember that at the bottom it is the material 
displacement field un that sustain the vibration modes. The Fourier transform, un 
= (N)-1/2 Σk Qk exp(ikna), allowed the introduction of collective coordinates {Qk} 
and boundary conditions defining allowed values for k, namely, -π/a< k ≤ π/a; 
this range of allowed k-values is the first Brillouin zone of the linear lattice. 
These coordinates and the conjugated moments {Pk} taken as operators (we know 
their commutation relations) can be cast in terms of Fock operators: 
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 Qk = (  

! 

h /2Mωk)1/2 [

! 

ˆ b k +

! 

ˆ b -k
† ] (8.5.5.14a) 

 Pk = i(  

! 

hMωk/2)1/2 [

! 

ˆ b k -

! 

ˆ b -k
† ] (8.5.5.14b) 

 
Also, 
 

! 

ˆ b k=(2  

! 

h)-1/2[(Mωk)1/2Q+k+i(Mωk)-1/2P-k] (8.5.5.15a) 
 

! 

ˆ b k
†=(2  

! 

h)-1/2[(Mωk)1/2Q-k +i(Mωk)-1/2P+k]  (8.5.5.15b) 
 
Thus, the fluctuation field operator 
 
 un=Σk(  

! 

h /2NMωk)+1/2[

! 

ˆ b kexp(ikn)+

! 

ˆ b k
†exp(-ikn)] 

  (8.5.5.16) 
This equation relates the I-frame displacement operator to phonon creation and 
annihilation operators in Fock space. The commutation relations between these 
Fock space operators read: 
 
 [

! 

ˆ b k, 

! 

ˆ b k’
†] = δ(k,k’) (8.5.5.17) 

 
The time dependence is constructed by replacing 

! 

ˆ b k by 

! 

ˆ b k exp(-iωk t) in 
(8.5.5.16) to get: 
 un(t)= Σk (  

! 

h /2NMωk)+1/2 [

! 

ˆ b k exp(i(kn-ωkt)) +  
  

! 

ˆ b k
† exp(-i(kn-ωk t))] (8.5.5.18) 

 
Take a quantum state of type: |Ψ>=C(nk) |nk> + C(nk-1)|nk-1> + C(nk+1)|nk+1>. In 
the average value one can check that <nk|

! 

ˆ b k
†|nk-1> and <nk+1|

! 

ˆ b k
†|nk> are 

different from zero.  
Thus, somehow we got a nearest neighbour interactions built in the formalism. 

In fact, it is eq.(8.5.5.6) defining the Hamiltonian that hides the dispersion 
relation that is related to Mωk

2. This point is disentangled below in E&E.  
 
 

E&E.5.5.5-5 
Let us restate the mechanical model underlying the phonon approach. This is a set of N 
masses (M) that are connected by springs of force constant Δ forming a ring (to simulate 
the Born-von Karman boundary conditions); with respect to the ring plane, the masses 
perform a transverse displacements. For a mass with position label s let the displacement 
be us and the associated momentum be ps. The Hamiltonian is: 
 
 H = Σs=1

N (ps
2/2M + Δ (us+1 - us)2 /2 ) (8.5.5.19) 
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Let us transform ps

2 and (us+1 - us)2 in term of k-space base functions, namely, eq.(8.5.5.x) 
and eq. (8.5.5.1a): 
 Σs ps

2 = (N)-1 Σs {Σk Pk exp(-iksa) }{Σk’ Pk’ exp(-ik’sa)}=  
 (N)-1 {Σk Σk’ Pk Pk’ Σs exp(-i(k+k’)sa)}=  
 Σk Σk’ Pk Pk’ δ(-k,k’) = Σk Pk P-kΣs(us+1 - us)2 =  
 (N)-1 Σs Σk Σk’ { Qk exp(ik(s+1)a) - Qk exp(iksa)}  
 { Qk’ exp(ik’(s+1)a) - Qk’ exp(ik’sa)}=  
 (N)-1 Σs Σk Σk’ { Qk exp(iksa) ( exp(ika) -1)} 
 { Qk’ exp(ik’sa)( exp(ik’a) -1)}= 
 {Σk Σk’ (N)-1 {Σs exp(iksa) exp(ik’sa)}  
  Qk Qk’( exp(ika) -1)( exp(ik’a) -1)}= 
 Σk Σk’ Qk Qk’( exp(ika) -1)( exp(ik’a) -1) δ(-k,k’)}=  
 Σk Qk Q-k( exp(ika) -1)( exp(-ika) -1) = 

 Σk Qk Q-k( 1 - exp(-ika) - exp(ika)  +1) =  
 Σk Qk Q-k 2(1-coska) 
 

In crystal coordinates the Hamiltonian takes on the form: 
 
  H =  Σk  (1/2M) Pk P-k + Qk Q-k Δ(1-cos(ka)) 

 
Defining the dispersion relation as: 
 
 ωk = (2Δ/M) 1/2 (1-cos(ka))1/2  
 
the Hamiltonian transform into a well known form: 
 
 H =  Σk  (1/2M) Pk P-k + (1/2) M ωk

2 Qk Q-k 
  
This is eq. (8.5.5.6). 
 
 
Now we have the dispersion relation between frequency and wave vector k:  

 ω2 = (2Δ/M) (1-cos(ka)) (8.5.5.20a) 

The boundary of the first Brillouin zone is ka = ±π. Calculating now dω2/dK one 
gets (2Δ/M) d(1-cos(Ka))/dK that equals (2Δ/M)a sin(Ka). At the boundaries one 
obtains sin(±aπ/a) = sin(±π/) so that the first derivative is always zero there. 
Finally, the factor  (1-cos(Ka)) can be rewritten with the help of a trigonometric 
identity as:  

 ω2 = 4(Δ/M) sin2(Ka/2) (8.5.5.20b)  
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Taking square root and changing notation so that three dimensional vectors 
comes in we get: 

 Ω(k) = Ω(-k) = 2(Δ/M)1/2 |sin (ka/2)| (8.5.5.21) 

The allowed values of k are given by eq.(8.5.5.2), namely, k= 2πn/Na; n= 0, ±1, 
±2, …,±(N/2 -1), +N/2. 
 For a given number of phonons at the k-th state, |nk> permits calculating 
the average value of the displacement operator un(t) given in eq.(8.5.5.18). 
Obviously, <nk| un(t)|nk> is zero; in a stationary state there is no motion! We 
calculate instead un(t)2: 

  <nk| un(t)2|nk> = (h nk/MN Ω(k)) +  

 Σk’≠0 h (2MN Ω(k’))-1  

The second term represent zero-point vibration contributions when all nk=0. The 
case k=0 describes the global motion of the crystal. The masses for k=0 do not 
vibrate. In the second term, the values of |k| are equal or larger than 2π/N|a| 
meaning with this that the frequencies Ω ≥ (2π/N) (Δ/M)1/2. 
 The excited base states are determined by a wave vector k, a quasi impulsion 
hk and energy E(k)= hΩ(k). These excited states are phonons. If we know 
phonon frequencies as a function of vector k then phase (Vp) and group (Vg) 
velocities can be calculated. Vp is defined as Ω(k) /|k| and Vg=dΩ(|k|)/d|k|. For 
the present model we get: 
 
 Vp = Ω(k) /|k| = 2(Δ/M)1/2 |sin (ka/2)| /|k| ;  
 Vg=(Δ/M)1/2 |a| |cos(ka/2)| (8.5.5.22) 
 
For very long wave length excitations, ka=2πa/λ <<1, then sin(ka/2) is 
approximated by the linear term ka/2 and  
 
 Ω(k) ∼ |k||a| (Δ/M)1/2  (8.5.5.23) 
 
While the term cos(ka/2) is approximately equal to 1 so that Vp ∼ 2(Δ/M)1/2  |ka|/2 
/|k| that equals to  (Δ/M)1/2  |a|; and  Vg ∼ (Δ/M)1/2 |a| showing that the system at 
very long wave length excitations behaves as elastic waves, i.e. Vp=Vg. These 
elementary excitations correspond to acoustic phonons.  

For the opposite limit of the Brillouin zone, ka→π or λ→ 2a the group 
velocity tends towards zero and the phase velocity to (2|a|/π) (Δ/M)1/2. 
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The model used so far seems to be too simple. If the interaction between two 
sites located at n and n-l is specific, we can put a label to the interaction 
parameter Δ that now should read Δl and the interaction potential takes on the 
form of a sum over two indices: Δl(un-un-l)2. The expression for the frequency is 
now: 

 MΩ2(k) = 4Σl Δl sin2(kl)/2 ;  

 l  = la and l=1,2,…,Nl (8.5.5.24) 

The analysis continues in the same manner as for the simple case. 

 The displacements in a linear model can be transversal (two) and longitudinal. 
The phonons related to the long wavelength are hence named transverse acoustic 
(TA) and longitudinal acoustic (LA) modes. For these modes energy increases 
linearly is a neighbourhood of k=0, they have zero slope at the limit of the 
Brillouin zone. 

 Consider now systems having at least two I-frames per crystal basis. Take the 
case of two I-frames. If the distance between these I-frames were frozen then 
nothing new concerning phonon spectra would be found, as the entity would 
behave as an effective “atom”. However, if these two I-frames were vibrating 
against each other optical phonons representing this type of fluctuation would 
appear. The acoustic phonons present transverse and longitudinal degrees of 
freedom. 

There are then transverse optic (TO), longitudinal optic (LO) phonons and for 
acoustic modes there are TA and LA phonons. This completes the qualitative 
classification of this type of quantized excitations. 

I-frames vibrations in the crystal are elicited by a number of phenomena: 
Crystal infrared absorption/emission processes; inelastic light diffusion (e.g. 
Raman effect); inelastic neutron scattering. These are ranged as linear-response 
effects to the extent the external probe is weak enough. There are a host of non-
linear effects involving phonon-phonon interactions.  

So far, I-frame systems have been considered as classical to the extent that the 
internal quantum state is thought as glue producing a definite total mass 
distribution. In the same spirit, I-frames endowed with an internal total angular 
momentum can be discussed with just the models discussed above, namely, linear 
arrays of “spins”. The case of interest is one for which s=1/2.  
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5.5.6. Spin waves 

 

I-frame systems showing spin S and disposed in a crystal can form several types 
of magnetic systems. Following with the simple linear crystal model we will 
sketch the study of collective fluctuations: the magnons.  

A magnon is a quantized spin wave or collective excitation of I-frames 
systems showing a total spin S.  

The quantum state of each spin I-frame is controlled by the complex 
amplitudes over the relevant base set noted as: |S,MS;i> or simply | Si,MSi> where 
the index concerns a given Wigner-Seitz cell or a Bravais lattice.  

Take the one dimensional space model where the amplitudes giving the 
specific quantum state with respect to the spin operators; the dimension includes 
the base states MSi, MSi-1,…, -MSi+1, -MSi. There are 2Si+1 terms that are 
degenerate in absence of interactions. In what follow, all N-sites of a linear array 
will show the same spin S. The ground state for non-interacting I-frame 
(separated) systems the ground state will be (2S +1)N-fold degenerate. The 
interaction between two spin is indicated by Δij; in the literature it is usually 
designated as Jij, the exchange coupling constant. The model spin Hamiltonian is 
given as a sum over all pair of I-frames: 

 Hspin = - Σij  Δij Si . Sj (8.5.6.1) 

This operator is known as Heisenberg Hamiltonian. What we need now are the 
base sets required to construct spin quantum states. 

Base states at each site are label as |S,{MS};i> the symbol designates the 
subspace 2S+1-fold degenerate at each site and the global base set is designated 
as: [|S,{MS};1>,…,|S,{MS};N>]. The base element at site-1, for example, |S,S;1> 
stands for |S,MS=S;1> corresponding to the maximum value MS can take. 
Similarly, |S,-S;1> designates |S,MS=-S;1>. It is certainly not an easy task to lay 
down the complete base set for the model. We go for the simplest case S=1/2 for 
which MS=±1/2. The site base state is a 2-spinor: |S=1/2,{MS};j> = [α   β]j. The 
spin quantum state for the j-th site is given by the linear superposition: 
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 |S; j> = Cα(j) α  + Cβ(j) α  =  

 Cα(j) |1/2,+1/2; j> + Cβ(j) |1/2,-1/2; j> = 

 (Cα(j)   Cβ(j)) [ α     β]  (8.5.6.2) 

Note that one can eliminate the supra index in the spin base; they are independent 
from the site label. The quantum state at the j-site is simply given the row vector 
(Cα(j) Cβ(j)).  

The special case (Cα(j)=1 Cβ(j)=0) we call it state +1 and  (Cα(j)=0 Cβ(j)=1) 
corresponds to state -1; these states are used now to designate site spin state. For 
a row vector (1,1,…,1j,…1N) the linear chain has been prepared with spin state (1 
0)=α at all sites. Similarly, (-1,-1,…,-1j,…,-1N) the 1D crystal has been prepared 
in the spin state ( 0  1)=b at all sites.  

Consider the case where at the j-site the label is -1 while all other have a +1; 
the initial state corresponds to a ferromagnetic material. One can think of the 
sequential process at the Fence:   

Initial state: (1,1,…,1j,…1N)  Ferromagnetic state 

Inject spin β-state at j=1:  (-1,1,…,1j,…1N) 

Make the system drift:  (1,-1,…,1j,…1N) 

    ------------------- 

 Propagation   (1,1,…,-1j,…1N) 

    ------------------- 

Probe at site N:  (1,1,…,1j,…,-1N) 

As the state -1 is changing position in a sequential manner we can see the process 
as a prototype spin wave. For this spin wave there is spin transport but not I-
frame (electron) transport. Observe that the energy is constant once the spin β-
state was injected.  

Look at the drifting system when (1,1,…,-1j,…1N), the time dependent 
Schrödinger equation in the nearest neighbor model has the form: 
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 ih dCj(t)/dt = Eo Cj(t) - ΔCj+1(t) - ΔCj-1(t) (8.5.6.3) 

There are similar equations for ih dCj-1(t)/dt and ih dCj+1(t)/dt. But, for the present 
model it is enough to solve the equation for the j-th case.  

The energy is fixed, say E, and we look at solutions having the form  

 Cj(t) = aj exp(-iEt/h) (8.5.6.4) 

Introducing (8.5.6.4) into (8.5.6.3) one gets: 

 E aj exp(-iEt/h) =  

 (Eo aj - Δ aj+1 - Δ aj-1) exp(-iEt/h) (8.5.6.5) 

Simplifying the exponential exp(-iEt/h) one gets: E aj = (Eo aj - Δ aj+1 - Δ aj-1). The 
sub indices identify a place on the linear chain, e.g. aj = a(xj) and we can write the 
simplified eq.5.5.6.5) as: E a(xj)= Eo a(xj) - Δ a(xj+1 ) - Δ a(xj-1). Use now the 
relationships: xj+1 = xj + b, where b is the I-frame spacing. Try now the form: a(xj) 
= exp(ikxj). Then one gets: E exp(ikxj) = Eo exp(ikxj) - Δ exp(ik(xj+1+b)) - Δ 
exp(ik(xj+1-b)). Divide by the common factor to obtain the dispersion relation: 

 E =  Eo - Δ exp(ikb)) - Δ exp(-ik b)) =  

  Eo - 2Δ cos(kb) (8.5.6.6) 

The amplitudes aj are given by: aj = exp(ikxj) exp(-iEt/h)= exp(i(kxj-Et/h). The 
energy E is given by a dispersion relation E(Ω) = h Ω and can be used to express 
the amplitudes as: 

 aj =  exp(i(kxj- Ω t)) (8.5.6.7) 

The spin excitation propagating along the linear chain receives the name magnon. 

 The state of motion for a magnon can be altered by interactions with a 
phonon field. Magnons can interact among themselves also. The quantization of 
the magnon field can be done without further problems, creation operators (

! 

ˆ µ †) 
and annihilation operators (

! 

ˆ µ ) operate on a vacuum of zero available excitations 
(magnons).  
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 Spin waves in anti-ferromagnetic materials will not be discussed here. 
The reader is kindly asked to examine a good Solid State Physics textbook. 

 
 


