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  9. Preparing-Detecting-Measuring-Modeling 

 
 
 
 
 
 
 
 
 

This chapter deals with key problems found at boundaries of abstract and 
laboratory worlds in a way we have only tangentially addressed so far. The grey 
zone, named Fence, not only helps communicating (mapping) these worlds, it is 
also the place for further development of quantum theories that are adapted to 
space-time events. Bridging phenomena involving sensorial elements to abstract 
theoretical levels there involves a long journey leading to uprooting connections. 
Quantum technologies have changed many of the foundational concepts used by 
those scientists that developed quantum theory. Most of the preceding chapters 
illustrate, in one way or another, such shifts. Most of the classical concept of object 
dissolves into material elements sustaining quantum states. A key issue is that a 
new kind of reality is constructed by our research tools. In this chapter, via the 
analysis of a number of cases, we will try to illustrate the sort of change that is 
taken place today. 

Measuring devices, sources, sinks, shelved chemical compounds...found and 
eventually designed and produced from scratch as objects relate themselves via 
changes of quantum states.  

The laboratory technology has gone a fantastic up build sensed by changes 
ranging from the simple spectroscopic instruments permitting recording of atomic 
and molecular spectra to present day quantum technology advances epitomized by 
nanoscale chemical imaging of a working catalysts (de Smit, et al. Nature, 456, 222 
(2008)).  

At a Fence implications derived from quantum state changes are confronted to 
representation of time and space including time scales, duration, location 
(presence) of laboratory material elements (objects). This is a reality constructed 
with the help of theoretic concepts; it is not something that you may simply 
“observe”. Basically, there is no need for observers but of experimenters able to 
change, capture and interpret signals from the surrounding interfaces. 

Quantum and classic theoretic frameworks relies on coordinate sets the origin of 
which is defined with respect to space-time inertial frames so that a clear-cut 
correspondence is never a transparent endeavor. Care is required to differentiate 
real space from configuration space. At the Fence one encounters blends of models 
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such as particle-wave, quantum field theories mediating Hilbert to real space 
together with so-called classic massive objects acting as measuring devices.  

Nevertheless, here the fundamental level corresponds to abstract quantum 
mechanics wherefrom the concept of quantum state occupies a privileged position. 
To be sure, quantum states are supported by material systems or generated by 
sources; scattered (absorbed) by sinks, as in the case of electromagnetic radiation. 
Do not forget that quantum mechanics is about possibilities and not probabilities; 
that is, the view is from within the physical situation. 

Special theory of relativity introduces a fundamental measure of time via 
signals propagating at a speed that is independent from the state of uniform motion 
of sources and sinks. The signal corresponds to electromagnetic radiation (light). In 
vacuum, the speed of light is constant (Cf.Chapt.6). A second element comes from 
electrodynamics involving the product of wave-length and frequency: λν=c; both 
can be modulated but once the value of one of them is determined the value of the 
other is fixed; their product is a universal constant. The third element originates 
from quantum physics relating an electromagnetic frequency ν to an energy 
difference between energy quantum bases states associated to material systems 
(Bohr relation).  These elements allow for the introduction of length and time 
standards. Thus, by 1990 the length standard was based on accurate frequency 
measuring the orange-red emission line of 86Kr; this energy difference translated 
into a frequency is further read as a measure of length λ=c/ν; similarly, the best 
clocks are atomic clocks based, for instance, on the hyperfine interval of an 
hydrogen atom measured from the ground state. Measurements are interactions 
translated to information in one way or another; they do not measure eigenvalues 
but functions based on them (Cf. Axiom 3 Chapt.3). 

At the Fence there is access to measured time and space intervals, energy 
differences, lifetimes. The time and frequency used in the theoretical framework 
are continuous parameters represented by real number sets. Lifetimes are 
accommodated in a complex number space. This enumeration of qualities is given 
to you to help sensing the type of problems theoretical frameworks are confronted 
to; many aspects concerning them have already been examined.  

Besides pure technical aspects, there are social environments (history) 
sometimes expressed via the so-called scientists’ spontaneous philosophy. This one 
taints the way physical theories are understood. One of the problems confronting 
the development of quantum physics relates to a view telling that theory would 
describe material (natural) objects: position, speed, physical properties directly 
coupled to things in real space. Therefore an interpretation of the theoretical 
structure became necessary in terms of the particle ideology where one finds 
statements of the kind: a material system, say one electron is in (or occupies) a 
specific base state; linear superpositions are reduced or collapsed whenever a 
measurement takes place; the statement, Schrödinger cat is either alive or dead or 
in a linear superposition where the cat is both dead and alive does not make sense; 
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a real object cannot be seen in that manner. And probably, the statement doesn’t 
make sense but for different reasons. For sure, this ideology must be revised, and if 
it is to be used at all it must be done with caution. Philosophy has been one of 
domains of the culture in deep crisis all along the twenty century; the old German 
idealism and naïve materialism/realism are no longer dominant; Wittgenstein, 
Heidegger, Carnap and others have severely criticized the philosophies of 
knowledge that are usually claimed to be required to understand QM (for an 
overview see D’Espagnat: The Veiled Reality).  

This chapter addresses the study of some mathematical elements required to get 
a little bit on the foundations of quantum mechanics. This corresponds to a level 1 
(see introduction) where no correspondence to laboratory situations is required. Yet 
we close the chapter with an inquiry about what is required to move into real 
laboratory processes. No attempt at completeness is made. The reader is referred to 
de Oliveira’s “Intermediate spectral theory and quantum dynamics” (Birkhäuser, 
Basel, 2009) as an appropriate resource. Now, let us remind the reader of some key 
mathematical elements: Quantum states form linear manifolds, where a unitary 
scalar product is defined; to each vector |g> there corresponds one and only one 
conjugated transpose, <g|; the symbol <g|h>, is a complex number, standing for the 
scalar product between two vectors |f> and |g>; <g|g> is a real number.  

All along this book, a number of important quantum physical ideas have been 
introduced; among them, there is the concept of quantum state as being different 
from the base states used to representing them. The quantum state can be probed 
by another quantum state serving as probe state via interactions to be specified in 
the following chapters.  

Let us now put some logic order in all this; emphasis is put on what permits 
differentiating base sets from quantum states. To try understanding QM by 
including those quantum states that will be related to sequences such as events-
instruments-recording seems timely. This requires an extended theoretical 
framework cast in terms of the unfolding of elements that belong to the world of 
quantum physics as unity not as separate from one another. Acknowledging 
possible validity boundaries is one task for those working in the field of QM. Here, 
it is the elementary energy exchange between quantum systems that is quantized; 
Planck’s discovery is essential in this respect. Average energy exchanges can look 
as continuous processes but elementary exchange is quantized, Bohr relationship 
holds. In abstract quantum mechanics the state related to a linear superposition 
must also be counted-by-one; the elements of the superposition add up to a state 
that differ from the multiplicity of base states. There are responses of the quantum 
state that express as a whole. Yet by partially resolving the spectral response of 
some or all of those base states involved (amplitudes different from zero) a partial 
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measurement obtains; Axiom 4 (Cf. Eq.(2.1.3) takes care of this aspect. The state 
that counts-by-one is a coherent state. There is still too much to uncover to get an 
understanding of this type of states. We got an appraisal when we examined Bose-
Einstein condensate states: a coherent state can interact with another coherent state 
in a global manner (coherently); this has been experimentally confirmed.  

Relating changes in material properties to variations of quantum states 
seems a natural hypothesis. But there is no answer to the question: How do 
quantum states change in real world? This is the wrong question. We know how to 
calculate those changes in Hilbert space and thence go back to the laboratory to 
experimentally check the results. An essential aspect of science is the comparison 
of conceptual models with experimental results. Agreement between what theory 
including computing predicts and experiments is a necessary but not sufficient 
condition to establish elementary interpretive maps. Quantum mechanics permit 
calculating all available possibilities. So far, it does not tell us localization 
emerging as a space-time point at the Fence. 

Measurement contains an element of correlated change of quantum states 
involving measured and measuring systems. A measuring device registers the 
change; its material constitution must be susceptible to let the experimenter to 
extract such register and turn into information or to include the system into a more 
complex arrangement that exploit the change as input data provoking other 
changes. By reading such record and comparing to a reference, quantitative 
measurement become possible.  

The measured system responds via its spectral structure. The set of energy 
eigenvalues and the transition amplitudes (integrals) are basic ingredients. The 
spectral response involves specific sets of energy differences. The identification of 
a given quantum state boils down to get the set of non-zero amplitudes with their 
labels. There can be a spectral activation if and only if the amplitude at the relevant 
root state, i.e. the one where the spectrum originates, happens to be different from 
zero. For those energy levels that can put up a relative intensity select a subset that 
might be sufficient to put labels (partially) identifying the system although the 
detailed quantum state is not (fully) determined. Below, we look at these problems. 
But, before doing this leat us present allegorically some aspects of quantum states 
in E&E-10: 

 
E&E-10-1. Transporting quantum states: an allegory 
Get hold of a digital camera, set up a fixed scenario and ask three persons to stand up  (and 
not move!). After fixing camera and participants black out the room and save one frame; let 
now sunlight to enter and save another frame with fixed-position camera. Obviously, 
looking at the back screen you will see the scene while the preceding frame is black. The 
first result is obvious; there is no light, the second one seems trivial: the frame shows the 
scene that is scaled down with respect to the real thing. Light is a quantum system, and its 
quantum state has been changed by the interaction with the “motif”. The material system 
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sustains a quantum state that would interact with light. Each pixel acts as a scattering center 
incorporating the quantum properties of the motif. Light is scatter in all directions that are 
obviously independent from the camera. Whether you are there or not is irrelevant, the 
motif scatter the light so that a register device at any position will be imprinted. If you 
move around the source (motif) one is detecting the same motif. If those people belong to 
the group of acquantaincies an oral description can be done identifying the members. The 
camera just fix one of those scattered states containing information on the scattering center. 
 Comparing the motifs you directly see and the one in the frame besides scaling they are 
pretty much the same.  What has happened? We can say that the quantum state accessed by 
light is transported to and scaled by the device. So, we have the quantum state related to the 
material system recorded in the camera device. You do not transport the objects but 
transport the relevant quantum states. 
 
 

This unusually long chapter introduction points to the novelties new generations 
will be confronted with. In what follows we bring to the fore a selection of cases 
that hopefully will help us to understand the new developmental stage quantum 
worls have achieved. Now we leave in the era of Quantum Mechanics taken as a 
resource to be used in emerging fields such as quantum information, computing… 

 
 
9.1. Preparing and Recording  

 
The nature of quantum superposition states and how we can sense or “see” them in 
our world continues to fascinate scientists. A big difficulty in teaching and 
understanding of QM when coming to measurement theory is that no universally 
accepted theoretical model exists (e.g. M. Ozawa J.Math.Phys.25 (1984) 79-87; 
W.M. de Muynck, arXiv:quant-ph/9901010v1; F. Laloë, Am. J.Phys.69(2001) 655-
701).  

A central problem is in fact posed by the so-called interpretation of QM. 
Ballentine (Rev.Mod.Phys. 42 (1970) 358-381) discusses two cases: (1) The 
Copenhagen Interpretation and (2) The Statistical Interpretation.  

In so far linear superpositions or quantum states are concerned, the view (1) 
asserts that a pure state provides a complete and exhaustive description of an 
individual system (e.g. an electron); the view exposed in (2) asserts that a pure state 
provides a description of certain statistical properties of an ensemble of similarly 
prepared systems, but need not provide a complete description of an individual 
system.  

In the early view, there are correspondence rules relating the primitive concept 
of state and observable to empirical reality. Observables are mapped on to the set 
of eigenvalues of a particular class of self-adjoint operators (e.g. Hamiltonians). 
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The individual systems would occupy one and only one base state; the amplitude 
appearing in the linear superposition in square modulus represents the probability 
to find one system in a base state when scanning the ensemble. 

The reader may find a careful discussion on these issues in Ballentine’s original 
paper (see also his Quantum Mechanics, A modern development, World Scientific, 
Singapore, 1998). The quotations made above are sufficient for our discussions. 

Two sources of uncertainty become apparent in preparation and measurement of 
a quantum system; they originate precisely from the way the system is prepared 
(first aspect) and thereafter the interactions leading to the change of quantum state 
allowing for detection (second aspect). These two aspects have not always been 
well acknowledged (de Muynck). Furthermore, the standard theory requires that 
each individual material system, once it is measured, be in one and only one 
eigenstate so that the amplitude squared is assigned a statistical interpretation. This 
sort of transition is named as the collapse of the wave function. 

The wave function collapse axiom is not acceptable as a universal mechanism 
(H. Fidder and O.Tapia, Int.J.Quantum Chem.97(2004)670-678 and references 
therein), it may work for some situations but not for all cases. Moreover, the 
statistical model is not a compelling feature as the present work shows; (go back to 
Chapter 8 for a discussion). Thus, we focus on the specifics associated to a 
measurement theory originated in the present physical model of the quantum state. 

The basic element to make sense of a linear superposition is given in Chapter 2 
(Axiom 4); it relies on the response to external probes. First, any material system 
may show a spectral response to external probes; this applies to the 1-system case 
as well. This makes a difference for a measurement theory because a spectral 
family implies pairs of energy eigenvalues having a common origin (root base 
state). Here, there seems to be a problem: the spectra of a given system would 
contain an infinite number of them as the energy spectrum can be formed from a 
infinity of base states. But, such is not the case because only root base states 
having non-zero amplitude in the linear superposition can put up a response to the 
probe. Normalization to unity permits defining relative intensity responses and the 
ensemble concept may help understanding modulation in intensity but it is not a 
fundamental element. The observables, to the extent they can be recorded, are the 
spectral lines; the amplitudes modulate the relative intensities; transition 
amplitudes cooperate to the intensity of specific lines.  

The probe may be selected so that only a fraction of the spectra is probed. 
Observe that a quantum system can interact in a quantum mechanical fashion only, 
namely via spectral response. Here lies the bottom line to quantization of material 
systems. 

The spectral response description differs from standard interpretations and can 
be considered as an element of a third “interpretation” of quantum mechanics. The 
gathering of probe and measuring system constitute a detector that function as a 
unity. A larger unit follows after including the measured system. Quantum base 
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states labels cannot be erased, amplitudes do. Entangled states for instance 
complete the global system they must be counted by one and not mix up with the 
base states. Measurement being defined in terms of the measured/measuring base 
states, entanglement would act as interaction mechanism that measurement finishes 
by resolving in one way or another. The important element for this type of 
measurement is the overlap between measuring/ measured spectral responses.  

 
 
9.1.1. Copenhagen view challenged 
 
The Copenhagen view of QM requires the existence of a classical macroscopic 
domain in order to explain the measurement process. Heisenberg uncertainty 
relations appear as the mathematical expression of the complementarity concept, 
quantifying the mutual disturbance that takes place in a simultaneous measurement 
of incompatible observables, say

! 

ˆ A  and 

! 

ˆ B ; i.e., the operators do not commute 
(Cf.Chapt.2).  

The standard deviations operators Δ

! 

ˆ A  and Δ

! 

ˆ B  can be arranged in the uncertainty 
relation with respect to a given quantum state |ψ>: 

 Δψ

! 

ˆ A Δψ

! 

ˆ B  =ΔA ΔB ≥ (1/2) |<[

! 

ˆ A ,

! 

ˆ B ]>| (1) 

The symbol <[

! 

ˆ A ,

! 

ˆ B ]> is just <ψ|[

! 

ˆ A ,

! 

ˆ B ]|ψ>, a quantum mechanical average. The 
inequality is known as Heisenberg-Kennard-Robertson relationship, which has 
often been interpreted as the mathematical expression of the disturbance following 
measurement. This type of inequality was derived in Chap.2, Sect.(2.2) and 
corresponds to the square root of eq.(2.2.3). Ballentine noted that this relationship 
does not seem to have any bearing on the issue of joint measurement; instead, this 
relation can be traced to the preparation process of an initial state as it also follows 
from Chapter 2 analysis. The reason behind this statement lies in the fact that 
separately measuring each standard deviation, (ΔA)2 and (ΔB)2, and making the 
product, √((ΔA)2(ΔB)2) = ΔAΔB,  this relationship can be experimentally tested. 
Thus, for the momentum-position operators the quantum state prepared as a plane 
wave, i.e. an eigenstate of the momentum operator, Δp=0 so that Δr must be 
infinite in such a way that the product has a lower bound, namely, h/2. From now 
on we select the direction of the momentum along the x-axis to simplify the 
discussion. 

Including the screen, the possibility to define position and momentum of a 
particle passing a slit located at the plane xS is limited by the screen observables 
uncertainties 
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 ΔzS ΔpzS ≥ h/2 (2) 

 

This equation defines again the system preparation at the slit. For a particle model, 
the latitudes δzS and δpzS of particle position and momentum must satisfy 
Heisenberg inequality, the product being larger or of the order: 

 

 δz δpz ≈ h/2 (3) 

 

This relation would represent a lower bound for the disturbing effect due to the 
measuring instrument on the particles. This would cause a post-measurement state 
of the object that satisfy the uncertainty relation. 

Inequality eq.(3) must be distinguished from the relationship satisfied by the 
standard deviations Δz and Δpz: 

 Δz Δpz ≥ h/2 (4) 

 

As already noted, the latter inequality concerns the (initial) quantum state 
preparation. Thus, eq.(4) being an instance of eq.(1) it does not refer to a joint 
measurement of position and momentum.  On the contrary, eq.(3) makes sense if a 
particle interacts at the slit; therefore, there is no direct connection to a quantum 
state in this case. 

For the two-slit experiment, according to standard QM, strict completion of 
eq.(2) would make impossible to determine which hole the electron or photon 
passes through without at the same time disturbing the electrons or photons enough 
to destroy the interference pattern. This is a puzzling situation in the particle 
model. Somewhere there is a missing link. 

For Muynck, the problem stems from a poor distinction made between different 
aspects of preparation and measurement. For the Copenhagen view, a measurement 
is not perceived as a mean to obtain information about the initial state of the system 
but as a way of preparing the system in some final state; a post-measurement state. 
The complementarity problem has actually two aspects: preparation and 
measurement that are not sufficiently distinguished. The concept of measurement 
disturbance should apply to eq.(2) and (3) while eq.(1) refers to the preparation 
step. Muynck concludes: “[w]ith no proper distinction between preparation and 
measurement the Copenhagen interpretation was bound to amalgamate the two 
forms of complementarity, thus interpreting the Heisenberg-Kennard-Robertson 
uncertainty as a property of (joint) measurement.” 
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In early quantum mechanics, complementarity distinguishes a world of quantum 
phenomena from the realms of classical physics; simultaneous observation of wave 
and particle behavior is not allowed by this principle.  

Progress in quantum technology permitted Scully et al. (Nature 351 (1991) 111-
116) to experimentally investigate such issues by setting up an atom interferometer 
apparatus.  Two questions were put forward in Scully et al. experiments: 1) 
Whether Heisenberg inequality eq.(3) is relevant for interference experiments; 2) 
Whether Heisenberg inequality is applicable at all; remember Ballentine’s stance 
that quantum mechanics is silent about the joint measurement of incompatible 
observables.  

The analysis within the particle model interpretation is developed in Scully’s paper 
just referred to. We suggest the reader to carefully study this paper. Here, we quote 
the result most relevant to the present discussion: “…we find that the interference 
fringes disappear once we have which-path information, but we conclude that this 
disappearance originates in correlations between the measuring apparatus and the 
system being observed. The principle of complementarity is manifest although the 
position-momentum uncertainty relation plays no role.” 

The interpretation of QM formalism in terms of the complementarity principle 
leads to puzzling situations; the particle-wave view seems to be fundamentally 
flawed to the extent classical concepts do not belong to an interpretive framework 
to quantum mechanics. The question is to know whether a view independent from 
the particle-wave model permit understanding the experimental results and predict 
new ones. 

 
 

9.1.2. View from the Fence 

 

Let us discuss the above phenomenology from the viewpoint presented here where 
no particles but quantum states and I-frame quantum systems occupy center stage. 
This means that question such as what path a particle might have followed has not 
a place. 

First, let us state some of the premises again: A system interacts via its quantum 
spectra; a quantum system can interact in a quantum manner with any other system 
even if considered as a classical one (remember allegory E&E-10). The receptors 
function as basic quantum systems at least locally; trivial cases are vision organs; 
skin heat sensors, heat comes as electromagnetic probes; Planck’s discovery 
applies: elementary energy exchange does it in quanta. Even if an elephant is 
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considered as a macroscopic object, the communication with the world surrounding 
the animal is made via quantum receptors. The reference to classical systems is just 
conventional. Observe, however, that for nearly all-practical purposes a classical 
physics description might be adequate, especially if you want to know where the 
elephant is heading. The separation between classical/classical is hence a practical 
custom not a physical law.  

Coming back to the two-slit experiment there is a sensitive surface located at a 
point beyond the two-slit surface acting as a recorder or detecting screen. For atom 
interference, if we prepare the system to get 1-systems sequentially, the elementary 
result is an event (click) at a detecting screen (location x=xD); the interaction at this 
Fence is local. All interactions are local; they involve a change of quantum state 
where the energy exchange is measurable in terms of energy quanta (electro-
magnetic radiation); thus interactions propagate at finite speed. 

First, consider the situation that may lead to an event (click) without including it 
yet. We have to determine the quantum state in a neighborhood of x=xD surface. 

This situation requires that the quantum states entering the description of a 
given experiment be carefully defined:  

i)  Before interaction with the double slit;  

ii) Quantum state preparation at the slits;  

iii) Quantum state beyond xS that can propagate towards the detecting screen.  

Hence the quantum state just before interaction at x=xD must be well defined. This 
is a key point. 

The quantum state incident to the screen with a double slit is usually taken as a 
plane wave; this is a useful model for a coherent state, the reciprocal vector k 
characterizes the base state. What is the meaning assigned to the initial state? For 
the time being, it is a laboratory prepared state; the material system sustaining the 
quantum states may be a molecule, atom, electron or photon. Examine the 
interactions; the origin for the slits is put on the y-axis. The plane wave propagates 
along the x-axis so that δpy is zero by construction and δy must be infinite in such a 
way that an equivalent to inequality eq.(4) holds; replace z by y only. The quantum 
state |Ψ> of the I-frame for a massive system is multiplied by the plane wave 
phase: exp(ikxx); the point is that k and x are vectors indicating direction and 
position in laboratory space, respectively; the function exp(ikxx) is a base function 
belonging to a linear vector space (rigged Hilbert space); note that there is a double 
use of the (k,x)-space, a pointer in real space, on the one hand, and support for the 
base functions, on the other. The spaces as used in this context are not 
commensurate! The case selected here for a 1-system the internal quantum state 
|Ψ> is not affected by interactions with screen’s holes. Or so the story goes. 
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The quantum state just before the holes is C(kx)exp(ikxx)|Ψ>; it is the same 
product at the slits also, the amplitude C(kx) is a fixed number. The quantum state 
of the system interacting at the holes does it quantum mechanically. As a result, 
each hole appears as a scattering center. The imprint of the classical object leads to 
localized emission amplitudes from the slits. Note that it is the initial quantum state 
that interacts simultaneously with the screen. The base states of interest are those 
propagating beyond the screen:  

 

|Hole-1>= exp(iγ1)<x,y,z|1> exp(i(kxx + ky1(y-D) + kz1z))|Ψ>;  

|Hole-2> =exp(iγ2)<x,y,z|2> exp(i(kxx + ky2(y+D) + kz2z))|Ψ>.  

 

The holes centers are located on the y-axis at distance 2D and radius d<<D. To 
alleviate notation the z-component is taken equal to zero in the Fresnel integrals 
<x,y,z|1> and <x,y,z|2>. If there are differences in the interaction, the phase γ1 and 
γ2 might differ. 

Let the quantum state after screen at xS be designated as |Φ>. The fundamental 
principle of QM allows us to write the quantum state as a linear superposition: 

 

 |Φ> = C1 |Hole-1> + C2 |Hole-2> =  

 <Hole-1|Φ> |Hole-1> + <Hole-2|Φ> |Hole-2> 

Because the case discussed now does not affect the internal state let us focus on the 
pure space part designated as  <x,y,z|(x>xS)>: 

  <x,y,z|(x>xS; z=0)> = 

  C1exp(iγ1)<x,y|1>exp(i(kxx+ky1(y-D)) +  

 C2exp(iγ2)<x,y|2>exp(i(kxx + ky2(y+D))  (5) 

This is a plane wave state in so far x-axis propagation is concerned. The quantum 
state includes information about interactions at the slits via amplitudes, phases and 
Fresnel integrals.  

The global quantum state |Φ> propagates until getting at a neighborhood of a 
detecting screen. The key result is a well-defined quantum state given by <x,y,z|Φ> 
= <x,y,z|(x>xS; z=0)> |Φ>; the (generalized) function eq.(5) is well defined at any 
point of a screen that can now be replaced by a recording screen thereby allowing 
for interactions to take place. It is worth emphasizing that eq.(5) requires that the 
material system sustaining the quantum state went through the double-slit. 
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Thus, whatever a recording screen will record, this recording must be (co-) 
related to the interaction with the quantum state generated at the double-slit; this 
latter being co-related to the source quantum state. Before discussing this part of 
the problem let us see whether we can glean some information from the values a 
quantum state has at a screen located at xD that has not been sensitized yet.  

A firm result will be this: if the value of the function at a given neighborhood to 
a point on the surface is zero, whatever you do there will never be a spectral 
response derived from a quantum mechanical interaction at that neighborhood. 
Another one: any finite value different from zero of the quantum state function at a 
given neighborhood of a point opens the possibility for a response from a properly 
sensitized surface. At any rate, energy must be conserved. 

At the level commonly used to discuss a quantum theory of measurement, the 
actual interaction mechanism between the measured and measuring system, that is 
responsible for energy exchanges between them, is not explicitly included. Thus, 
this representation level suggests all possibilities a quantum state has to interact 
with something else. Why do we not include such effects from the beginning? A 
reason may be that the founder fathers extracted the basic elements of the process 
via “thought experiments” where actual material mechanism was not relevant. 
Here, we proceed along this line; later on more detailed frameworks are described.  

Interference effects result from overlap between the states originated at each 
slit. Fresnels’ functions have zero overlap just after the double-slit screen. The 
quantum state in this region would correspond to two separate (non-interacting) 
beams. Helped by collimators, a two-channel state can be prepared if one want to 
do this.  Because these channels are separated in real space experiments can be 
designed that will modulate each channel at will; Scully et al. paper present thought 
experiments using this type of device. 

The condition for interference to appear was the sameness of the quantum state 
that interacts at the holes; the holes being of equal nature. When the two-channel 
state is manipulated so that they come up different from each other and they are 
channeled to another two-slit device, interference cannot be necessarily expected; 
the response at a given point is determined by the numeric value of the amplitude. 
Whenever a mechanism is set up to restore sameness to both channels, then 
interference effects will show up necessarily. 

The mathematical expression of <x,y,z|(x=xD)> yields further insights. 

 

 <x,y,z|(x=xD)> = C1exp(iγ1)<xD,y|1>exp(i(kxxD+ky1(y-D)) 
 + C2exp(iγ2)<xD,y|2>exp(i(kxxD+ky2(y+D)) (6) 
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The factor exp(ikxxD) indicates where to look at, namely at the plane surface 
located at xD; ky1 points in the direction of interest from the frame located at hole-1; 
ky2 does it from hole-2.  

Furthermore, look at the state corresponding to y=0 and z=0, the values of the 
integrals <xD,y=0 z=0|1> and <xD, y=0,z=0|2> are equal so that:  

 <x,y,z|(xD,y=0,z=0> =    
 exp(ikxxD){C1<xD,y=0|1>exp(-iky1D)) +  

 C2expi(γ2-γ1)<xD,y=0|2> exp(iky2D)} (7) 

The amplitude reflects the geometric characteristic of the holes and the physical 
character of the interaction cloaked in the coefficients C1, C2 and the value of the 
Fresnel integral. 

A response in the intensity regime leads to  

 

 I(xD,y=0,z=0) = |<xD, y=0,z=0|1>|2 {|C1 |2+|C2 |2 +  

     C1C2
* exp(-i(ky1+ky2)D) expi(γ2-γ1) +  

 C2C1
* exp(i(ky1+ky2)D) exp-i(γ2-γ1)  (8) 

 

For this specific set up, (ky1+ky2)=0 and if no phase effects were introduced by the 
interaction, namely, (γ2-γ1)=0, the intensity depends upon the amplitudes: 

 

 I(xD,y=0,z=0) = <xD, y=0,z=0|1><xD, y=0,z=0|2>  

 {|C1 |2+|C2 |2 + C1 C2
* + C2 C1

* } (9) 

 

The cross terms add up to the real part of the product: 2Re C1C2
*. The intensity at 

this point reflects the nature of the interactions between the ingoing quantum state 
and the 2-slit device. The particular case C1 = C2 = 1/√2 and (γ2-γ1)≠0 produces the 
result: 

 I(xD,y=0,z=0) = |<xD, y=0,z=0|1>|2  

 { 1 + 1/2( expi(γ2-γ1) + exp-i(γ2-γ1)}  (10) 

 

An interesting case corresponds to (γ2-γ1)= π/2. For now, the real part in the 
interference term cos(γ2-γ1) annihilates while the imaginary part of the exponentials 
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sum cancels out. The intensity being |<xD,z=0|1>|2 while for (γ2-γ1)=0 the intensity 
is twice this value. 
 

E&E-9.1-1Check with the amplitudes the above results 

The look at the amplitudes is actually the thing to do to check consistency. From eq.(7) we 
have: 

 |(xD,y=0,z=0>= 

 exp(ikxxD) {C1<xD,y=0|1>exp(-iky1D)) +  

 C2expi(γ2-γ1)<xD,y=0|2> exp(iky2D)} = 

 <xD, y=0,z=0|1>exp(ikxxD) {C1 exp(-iky1D)) +  

 C2 exp(iky2D)expi(γ2-γ1)} 

 

At this point the geometric set up yields exp(-iky1D)= exp(iky2D) because ky1=-ky2= kyD a 
fixed value: 

 |(xD,y=0,z=0>= <xD, y=0,z=0|1>exp(ikxxD) exp(-ikyDD) {C1 + 
 C2 expi(γ2-γ1)} = <xD,y=0,z=0|1>exp(ikxxD) exp(ikyDD)  

 × {C1 +C2 (cos(γ2-γ1)+isin(γ2-γ1))} 

 

For (γ2-γ1)=π/2 and C1 = C2 = 1/√2 the amplitude reads:  

 

 |(xD,y=0,z=0> =  <xD,y=0,z=0|1> exp(ikxxD) exp(ikyDD)   

 × (C1  + iC2) 

The amplitude is now a complex number and the intensity response depends on 
|<xD,z=0|1>|2 that is multiplied by (C1 +iC2) (C1 -iC2) = |C1 |2+|C2 |2 =1. The wave function at 
this particular point is normalized to unity, as it should. 

 

For an interaction at the slits producing a difference in phase (γ2-γ1)=π it is easy 
to check that the intensity at the origin of the recording screen defined here 
annihilates. 

The preceding discussions show that the amplitude at the mid-point between the 
slits can be modulated in different manners and this modulation is reflected at the 
screen where we may put a detector device. The interactions at the 2-slit determine 
the type of response to be measured at the recording screen. The fringes may 
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disappear if the amplitudes C1 and C2 are independently changed thereby breaking 
the coherence.  

The correlations do not originate between the measuring apparatus and the 
system being observed; the quantum state at the recording screen is totally 
independent from the presence of such a sensitized screen. This is a fundamental 
theoretical result: It is measurement of the wave function, which is the basic 
element of the theory. 

The event showing the local interaction appears to be contingent in so far place 
and time are concerned. But it is the necessary correlate to the interaction between 
both systems: screen and quantum states of the material system we are interested in 
measuring. It is the change in quantum state elicited by the event that put in 
evidence a presence, namely, that of the material system supporting the quantum 
state. But we are not yet there with the theoretical description. 

We also have the shadows corresponding to the slits we put on the first screen; 
here for shadow-1 the wave vector component will be kyD1 and kzD1 for a circular 
slit; to get a simple picture we keep z=0.   

If we look at the intensity pattern we can infer a simple result, namely, a 
decrease in amplitude squared from the origin in the detection surface towards the 
origin of the slit’s shadows. For the intensity pattern this is controlled by the 
overlap between the Fresnel integrals. But there is need for a reference just in case 
we decide to close one slit for example. 

The quantum state interacting with the open one-slit is the same as the one we 
used with the open two-slits. The interaction generates a scattered state represented 
by eq.(6) by taking C2=0 to get:  

 

 <x,y,z|(x=xD)> =  C1exp(iγ1)<xD,y|1>  

 × exp(i(kxxD + ky1(y-D)).  

To this base state adds the incoming initial state exp(ikxx) to form a diffraction 
quantum state:  

 <x,y,z|(x=xD);diffraction> = exp(ikxx) 

    × {1+ C1exp(iγ1) <xD,y|1>exp(i( ky1(y-D)} 

The intensity pattern obtains from |<x,y,z|(x=xD);diffraction>|2. The contribution to 
the diffraction takes on the simple form when C1 <xD,y|1> is taken as the product of 
two real numbers: 2C1 <xD,y|1> cos(f(x,y)) + C1

2 <xD,y|1>2 ; here f(x,y) is the 
exponential argument, (kxx+ γ1+ ky1(y-D)).  
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Consider a Fraunhoffer diffraction case. At the detecting surface there will be a 
maximum in intensity at the center of the shadow-slit. Followed by concentric 
circles with decreasing intensity. The diffraction pattern will reproduce itself at 
shadow-slit 2 when slit-1 is closed. If there were no interference between states 1 
and 2 one would expect a sum of each slit diffraction intensity pattern. Thus, very 
little intensity in between the shadow slits.  

Two-slits being simultaneously open and (γ2-γ1)=0: The preceding analysis 
shows that the intensity of the diffraction pattern at a shadow-slit becomes 
weighted down by the small overlap Fresnel integral. However, the intensity 
increases at the middle. The interference pattern would clearly appear. That’s it. 
The complete diffraction pattern should appear if we could measure the quantum 
state or something related to. 
 
E&E-9.1-2 Scattering theory perspective 
The diffraction quantum state can be seen as a specialized form of the quantum state 
obtained from scattering theory. The initial state for the model considered above is the 
plane wave in the direction indicated by the wave vector k: exp(ik⋅R). The initial state is 
then exp(ik⋅R)|Ψ>. The interaction at the slit does not change the internal I-frame quantum 
state and the outgoing state |g+> projected in real space coordinates <R|g+> = Φg

+(R) is 
given approximately by: 
 
 Φg

+(R) ≈ [exp(ik⋅R) + 
  (exp(i|k| |R|) /|R| ) C(E, k /|k|, kc /|kc| )] |Ψ>  
 
The unit vector kc /|kc| indicates the direction of the scattered state, k/|k| is the unit vector 
indicating the direction of the vector k. The amplitude C(E, k /|k|, kc /|kc|) has dimension of 
length due to the form assigned to the scattered state. The differential cross section σ(E,k 
/|k|,kc/|kc|) is proportional to | C(E, k /|k|, kc /|kc|) |2. 

For the problem we have been discussing take square modulus of the amplitude in square 
brackets. There is need to calculate exp(ik⋅R) explicitly.  

 

 exp(ik⋅R) = 4π Σl=0,∞ Σm=- l,+ l  il  Yl,m
*( k /|k|) Yl,m (kc/|kc|)  

 × jl(|k| |R|) 

 

The Yl,m is a spherical harmonic (base function of the angular momentum 

! 

ˆ L 
2 (Cf. Sect.3.5), 

the function jl(|k| |R|) is a spherical Bessel function of order l.  A similar expansion must be 
carried out for the amplitude function. Name the unit vectors as nk= k /|k| and nkc = kc/|kc| 
the amplitude of the scattered state reads: 
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  C(E, n, nc ) = (2πi/k) Σl=0,∞ Σ � =- l,+ l  il  Yl,m
*( nk)l   

 × Yl,m (nkc) Tl(E) 

 

Where Tl(E) is a phase factor: 1-exp(2iφl). The phase shift φl is due to the interaction with 
the slit. 

The function Φg
+(R) represents in this context our |(x=xD); diffraction>. The assumption 

is that the scatter center is spherical symmetric. 

 
 
9.1.3. Quantum states and recording screens 
 
The quantum state discussed above not only must have response spectra able to 
disclose the interaction with the measured quantum system but also must let 
register it. At this point the Fence makes its appearance. If no-register is implied, 
quantum interactions entangle measuring/measured quantum states keeping 
everything in Hilbert space. You will never get funded to produce Hilbert space 
knowledge only! At some point information must be produced; this implies a 
change of entropy (energy dispersion). Even if we can claim that it is the evolution 
in Hilbert space that determines the way the material system sustaining the 
quantum state (thing) will change it is in the laboratory world with its objects in 
real space that such effects should manifest. 

Information production has at least two aspects: 1) an imprint in a material 
support; 2) an interpretation (reading) of such imprint. The first item concerns 
physics; the second aspect has a social aspect that at the very least expresses itself 
via communication channels. To make things simple: the photon field impinging 
your eyes may produce a record, if you have never seen or informed about the 
shape of the object reflecting light out there the response of yours might certainly 
be of surprise if not panic, and if asked to describe what can it be, no words might 
be available. You have learned about the things in the world we live in. Thus, an 
interference pattern is a well-defined imprint that we have learned to control and 
use it as an instrument. In this book we stop most of the time at the physical level: 
we are studying, preparing, changing or using as devices what we have called 
quantum states.  

So much for the introductory aspects: Let us consider some examples of how 
information can be produced. Let us first propose a toy model that can help us in 
this respect. 

Consider a two-state I-frame quantum system. The ground base state |0> and  
|1> an excited state gathered in the column vector [|0>   |1>] are used to represent 
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any quantum state of this quantum reading system; the energy difference ΔE = E1-
E0, a positive quantity, can be radiated with a frequency ν such that ΔE = E1-E0= hν 
= hω.  

The quantum state (C(0) C(1)) for which C(0)=1 and C(1)=0 corresponds to the 
ground state: |1,0> = (1  0). Off-resonance frequencies ω’ put the system in a linear 
superposition state with amplitudes proportional to (cos ω’t  sin ω’t); the I-frame 
system is coupled to the electromagnetic field.  

Consider a resonance case: ω’= ω . For the global system there are two states: 
|0>|nω=1> and |1>|nω=0> with equal energy; note the qualitative difference: for 
|0>|nω=1> the energy is in the field; while |1>|nω=0>, energy localizes at the 
material system the photon field has not available energy (it is “empty”).  

But now you know something about this system. For example, if the amplitude 
at base state |1>|n ω=0> is near one, the interaction with the vacuum prompts for the 
spontaneous emission in any arbitrary direction; the I-frame system “return” to the 
ground state: C(0,n ω=1) ≈1 while C(1,n ω=0) ≈0. We do not want this because a 
full control of the energy is required to construct a theoretic recorder; thus, select 
adequate material systems to sustain this type of states with minimal spontaneous 
emission. Assume we have it. A premise required for a quantum system to be 
transformed into a detector is laid down. For a finite time interval one can consider 
the energy localized at the I-frame system. By connecting this I-frame to a 
secondary system able to catch up that energy and use it in activating a cascade 
process we have an event. The catching up event can be amplified and stored 
somewhere else; the actual mechanism of recording may well enter into complex 
devices that are not the focus for the elementary measurement model we are 
discussing. An important point is that the recording subsystem is left in a ground 
state, probably ready to act again. More fundamental is the local character of such 
event borrowed from the local nature of the I-frame. 

A new, fundamental feature has pop up: the event leading to an actual energy 
transfer between the measuring I-frame system and the amplifier device. This kind 
of event discloses an interaction with the measured system albeit indirectly. At any 
rate, energy conservation is required because this is a Fence event between two 
different material systems. 

To remain in Hilbert space implies that the measuring/measured quantum 
systems remain in an entangled state unknown to people at the Fence. But all 
possible changes are there anyway. To disclose them, energy must be exchanged 
and consequently entropy must vary. One is coming close to thermodynamics as 
soon as the description of phenomena forces the systems to leave Hilbert space. 

So far a photon field has represented the Fence quantum system of interest. We 
do this not only because it is easier to construct the formalism but also EM 
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radiation is an energy carrier allowing for sensing the sources of such radiation. 
The photon field transports the information about an external (to Hilbert space) 
world; you do not have an elephant at the retina but a coded quantum state; the 
information is there to be decoded, we call it an image and society assign a name 
(label) to that wich is the case. Thus, the material system sustaining the quantum 
states must have energy to exchange with the I-frame detector system or the 
measuring field can be the energy source.  

Retain the two-state model idea for the photon field and define the operator: 

! 

ˆ " = 
|-><-| + |+><+| as the unit operator in this new abstract space. The energy quantum 
state can be written as a linear superposition: 

 

 |ΔE > = |-> <-|ΔE > + |+> <+|ΔE > 

 

Let prepare the system in the particular state <+|ΔE >=1 and <-|ΔE >=0. This 
means that the system can deliver an energy ΔE in the transition |+> → |->. The 
energy states are used in conjunction with the scattered quantum state. 

The total wave function after interaction with the double slit including energy 
states is given by: 

  <x,y,z|(x>xS)> |ΔE > = {C1 exp(iγ1) <x,y|1> 

  exp(i(kxx+ ky1(y-D))) + C2 exp(iγ2)<x,y|2>  

 × exp(i(kxx- ky2(y+D)))} |ΔE > (9.1.3.1) 

The operator 

! 

ˆ "  permits introducing a possible energy exchange into the abstract 
formalism in a simple manner. Using the I-frame energy basis, the quantum state 
can be written as: 

 <x,y,z|(x>xS)> |ΔE > =  

 C1 exp(iγ1)<x,y|1> exp(i(kxx+ ky1(y-D)))  

 ×  ( |-> <-|ΔE > + |+> <+|ΔE >) + 

 C2 exp(iγ2)<x,y|2> exp(i(kxx- ky2(y+D)))  

 × (|-> <-|ΔE > + |+> <+|ΔE >)    (9.1.3.2)  

Reordering this equation to get the amplitudes acting at the base state for energy 
exchange and defining terms: 

 A(C1,C2,γ) = {C1exp(iγ1)<x,y|1>exp(i(kxx+ky1(y-D))) + 

 C2exp(iγ2)<x,y|2>exp(i(kxx-ky2(y+D)))} 
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one gets: 

 <x,y,z|(x>xS)> |ΔE > =  

 A(C1,C2,γ) {<-|ΔE>|->+<+|ΔE> |+> } (9.1.3.3) 

 

From the perspective of the photon field the intercation information embedded in 
the function A(C1,C2,γ) imprints in both channels. Now, look at the quantum state 
for an I-frame system prepared in the state <+|ΔE >=1 and <-|ΔE>=0 the 
propagating quantum state is the linear superposition: 

 

 {C1exp(iγ1)<x,y|1>exp(i(kxx+ky1(y-D)))+ 

 C2exp(iγ2)<x,y|2>exp(i(kxx- ky2(y+D)))}|+>}  

 

The component |-> has zero amplitude. 

The response in intensity at the detecting screen is just equation: 

  

 |{C1exp(iγ1)<x,y|1>exp(i(kxx+ky1(y-D)))+ 

 C2exp(iγ2)<x,y|2> exp(i(kxx- ky2(y+D)))}|2  (9.1.3.4) 

 

This simply means that at whatever space point the amplification event might take 
place, the system would be measuring the whole interference pattern at given 
neighborhood. A local detector permits calculating the amplitude just there so that 
the amplifier may or may not be triggered. 

The actual localization of a triggering process does not belong to the present 
model. Once it happens, a spot (click) becomes visible (localized). The spot 
produced by the material I-frame system is given a particulate property. However, 
there is no compelling quantum mechanical reason that would permit to identify 
the real space event to a particle, although in the particle model philosophy such 
assignment would seem natural. We are bordering here issues related to 
contingency and necessity. These issues are left to the following subsections after 
some experimental input on diffraction/interference experiment is introduced to 
you. 
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9.1.4. Events at recording screen  
 
The feature we have just found at the Fence is the activation of a detection screen. 
It appears as an event localized in real space that can be timed once the system is 
clocked when it was set up in action. Thus, an arrival time can be registered. All 
these events occur then in real (laboratory) space. 

There is more. Tonomura reported experiments on electron interference using 
field-emission electron microscope equipped with an electron biprism and 2-
dimensional position-sensitive electron-counting system (Ann.Acad.Sci.NY.755 
(1995)227-240). Electron events could be counted one by one on a TV monitor. 
Let us describe some results from the present perspective. 

 

1) The first event may happen anywhere on the TV screen; you can prepare the 
system as many times as you want and check that the first event appears localized 
(almost) at random; this randomness is only apparent if you use the theory 
presented here. What has happened was a change in amplitudes for a transition 
from state |+> to |-> by capturing energy from the I-frame system; the relative 
intensity being:  

 

 |{C1exp(iγ1)<x,y|1>exp(i(kxx+ky1(y-D))) +  

 C2exp(iγ2)<x,y|2> exp(i(kxx- ky2(y+D)))}|2  (9.1.4.1) 

 

This is calculated at the position of the spot. Thus, the information contained in the 
spot is there to reflect the value given by the mathematical framework; we know 
then that it makes part of an interference pattern. Why does it appear at that 
position and not at another one? Such a question is related to the amplifier device 
not to the quantum mechanics behind. 

2) When the number of electrons from the source increases an interference 
pattern becomes recognizable. This result elicits eq.(9.1.4.1). 

3) “Even when the electron arrival rate is as low as 10 electrons/s over the entire 
field of view (so that there is at most only one electron in the apparatus at one 
time), the accumulation of single electrons still forms the interference pattern.”  
This statement made by Tonomura can be seen from the present perspective in a 
different light. The emergence of an interference pattern for the present quantum 
mechanical description is ensured even if you send one-by-one during a period of 
one year or a millennium (all other things been equal) provided the information 
revealed by the spot is directly related to the values of eq. (9.1.4.1). The 
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distribution when there are few electrons may seem quite random but the what is 
emerging there is just the quantum state given as an amplitude squared in eq.( 
9.1.4.1). 

4) Even if there are two slits there has never been talk about which slit (path) the 
electron has taken. Quantum mechanics is about quantum states. If you know 
which slit is used then this would mean that either C1 or C2 is zero. In that case, the 
interference trivially vanishes. The quantum state has changed because the 
experiment is different compared to the preceding case. 

5) Theoretically there are nodal strips so that no particle spots would be appearing 
on screen. In practice the screen will end up fully covered if you let the experiment 
proceed for a long time. You can discuss this result in the classroom! In such 
situation we would have been doing the theory based on the recording-reading data 
elicited by the spot counting. The point is that we seek after a quantum mechanical 
description of the double slit diffraction from abstract Hilbert space quantum 
mechanics. Spot counting occurs in real space with all experimental errors 
naturally associated to them. 

6) There is never talk about collapse of the wave function. Only a quantum 
transition is involved the wave function is the amplitude affecting the base state 
|+>. With hindsight, the initial state could be restored. 

7) Performing a phase change so that (γ2-γ1)= π we know that instead of a 
maximum in the interference-pattern at the middle there must by a nodal region. 
The experiment was performed by Tonomura to find just this result.   

 

The energy transfer in our view does not destroy the I-frame quantum state. 
Only the amplitudes have changed. By disentangling the classical mechanics view 
of particle from the quantum state sustained by the material system, the “welchen-
weg” (which path) problem vanishes.  

Yes, the I-frame as a material system must have gone through one of the slits, 
mustn’t it? But this is not the point. The material system evolves in a real space and 
the event amplified is as such totally irrelevant to quantum mechanics we are 
probing, because it tells nothing new; it confirms that quantum state scattering, 
prepared the way it was, produce a dispersion of the material system that is tightly 
associated to a specific interference pattern. However, the event is relevant to the 
experimental work that must be designed so that timing is exactly measured.  

A quantum mechanical formalization of time observables, as the one seen in the 
arrival time above, is still and open and challenging fundamental question (Muga, 
J.G. and Leavens, C.R. Phys.Rep. 338 (2000) 353-438). The issue has thoroughly 
been discussed in Muga and Leavens paper. The severe criticism raised by W.Pauli 
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(General Principles of Quantum Mechanics, Springer-Verlag, Berlin 1980, footnote 
on page 63) is still valid. The time used in the time ket |t> is just a label, a real 
number not a dynamic variable; there is nothing like the eigenvalues equation: 

! 

ˆ t |t> 
= t |t> such that 

! 

ˆ t  commutes with a Hamiltonian operator 

! 

ˆ H  that is bounded from 
below. Time scales are defined with the help of quantum transition energy, i.e. 
energy differences, while the energy scale comes from the energy eigenvalues of a 
bounded Hamiltonian. The transition is sensed by an electromagnetic field. 
Moreover, it cannot have escaped your attention that time was measured at the 
moment of I-frame production and time of arrival is conventionally taken as the 
one recorded for an event. All timing that has happened has done it in real space 
without “time-spectra”. One of the difficulties to overcome is as follow: the eigen 
values of energy should range from plus to minus infinity as it is for space base 
kets, time and energy are canonical conjugate, this implies that for Hamiltonians 
bounded from below, energy cannot range from minus to plus infinity as it should. 
Relativistic physics does not help; the base states for “antiparticles” must be 
included with positive energies that are bounded from below (Cf.Chapt.7). 
 
 

9.2. Preparation and time evolution 
 
Whenever a quantum system includes measured and measuring base states there 
must be a way to prepare both subsystems independently. Also, the quantum state 
of the measuring system must be accessible to devices able to read the changes 
imposed by the interaction. The measuring device and the measured system should 
not end up in entangled states in order to qualify as a semi-classical apparatus. We 
examine here some aspects of this problem. 

The operator

! 

ˆ H D defines the measuring material system Hamiltonian 
(detector). The base state vectors {|kD>} fulfill the equations: 

 
  

! 

ˆ H D|kD> = EkD|kD>;  
 

EkD is the kD-th energy eigenvalue. For the measured system we have: 
 
 

! 

ˆ H S|jS>  =  EjS|jS>;  
 

EjS is the jS-th energy eigenvalue. 
The base set for the compound system is the direct product {|jS >} ⊗ {|kD>}= 

{|jS> |kD>}. This separability hypothesis is what makes a detector capable of 
performing measurements on the object system. The reason is simple: before and 
after the quantum interaction the detector and object systems should not appear 
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entangled. The quantum state before interaction can be factored as |ϕ(S),t=to> 
|φ(D),t=to> and after the measuring interaction has been accomplished one should 
have a simple product again: |ϕ(S),t=t∞> |φ(D),t=t∞>. Thus, 

 
 |ϕ(S),t=to> |φ(D),t=to> ↔  

 {Σj,k C j,k(τ)|jS kD>}τ ↔  
 |ϕ(S),t=t∞> |φ(D),t=t∞>   (9.2.1) 
 

We have used the Greek letter τ to signal the evolution in Hilbert space. Entangled 
states are those having amplitudes Cj,k(τ) that cannot be expressed as a simple 
product, e.g. Cj,k(τ) ≠ aj(τ)bk(τ); in what follows the model requires non-entangled 
states after interaction between subsystems. The ingoing and outgoing product 
states can easily be measured at the Fence. Each one has associated an I-frame, and 
can hence be localized in space. The time measured at the Fence presents no big 
problems if we can identify the response from the simple product states. 

The material content of the measuring and measured systems is invariant. At the 
Fence this model does not allow for charge transfer effects, only energy exchanges.  

Quite a different situation obtains at the interaction zone where the non-
interacting systems 

! 

ˆ H S + 

! 

ˆ H D =

! 

ˆ H o and the interaction term

! 

ˆ H S-D makes up for the 
total Hamiltonian 

! 

ˆ H : 
 

! 

ˆ H  = 

! 

ˆ H o + 

! 

ˆ H S-D    (9.2.2) 
 

The Hamiltonian 

! 

ˆ H  stands for a material system whose content is the sum of the 
material contents of our S- and D- systems. The partitioning given at the right-hand 
is one among many from a set of n (= n S +n D) electrons and N (=N S +ND) nuclei 
global system. The nuclear charge and the electron charge are conserved; the 
former are distinguishable, the latter are not. In the relation (9.2.1) the quantum 
states of the system goes through an enlarged base system corresponding to the 
base state of 

! 

ˆ H . 
The model chosen for a measuring device implies that the map (9.2.1) holds. In 

Hilbert space evolution, anything compatible with the spectra of the total 
Hamiltonian is allowed. The constraint expresses at the Fence, where (for this 
model) only simple products state amplitudes can be sensed.  

The passage via Hilbert space opens all sorts of mechanistic proposals, 
including charge transfer states in which case such base states must be included 
from the very beginning; at the Fence energy must be conserved. 

Observe that the spectra of the measuring apparatus must overlap the spectra of 
the measured system, totally or in part. Another fundamental hypothesis, valid for 
any measurement theory at the Fence, is that spontaneous emission is a negligible 
phenomenon. Thus, a quantum that is used to change the state from k to k’ in the 
detector comes from a transition j to j’ in the measured system; a perfect measuring 
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device must respond to all possible transitions in the measured system. In this case, 
an imprint of the measured system is to be found in the measuring device. In 
between the preparation time and the actual recording the global system evolves in 
Hilbert space. This is a characteristic of Fence processes we already met in the 
preceding section. 
 

The recording aspect of measurement is represented by an interaction between 
two quantum subsystems: the measured system given by the Hamiltonian

! 

ˆ H S and 
measuring system by the Hamiltonian 

! 

ˆ H D. The interaction operator

! 

ˆ H S-D(t) is a 
time dependent operator that in units of h/2π = h =1 related to the time independent 

operator 

! 

ˆ H S-D by the ansatz derived from the interaction representation already 
familiar to you: 
 
 

! 

ˆ H S-D(t) = exp(i

! 

ˆ H ot) 

! 

ˆ H S-Dexp(-i

! 

ˆ H ot)  (9.2.3) 
 
HS defines the object system (S) under investigation and HD characterizes the 
detector (D). 

In the model retained here, the time independent operator is written as: 
 

  

! 

ˆ H S-D = (1/2)

! 

ˆ V S(D) + (1/2) 

! 

ˆ V D(S).   (9.2.4) 
 
The operators 

! 

ˆ V S(D) and 

! 

ˆ V D(S) are formally equal, but arranged differently. Thus, 

! 

ˆ V S(D) is interpreted as a field operator acting from system S with a field operator 
on to the detector D, and vice versa.  

As an example take the dipole-dipole approximation, operator 

! 

ˆ V S(D) stands for 

the scalar product - µ
!

S. E
!

D, and 

! 

ˆ V D(S) is analogously defined as - µ
!

D. E
!

S; for the 

case of a Stern-Gerlach  experiment, the field E
!

 stands for a magnetic field and µ
!

 
is a magnetic dipole operator. Note that the basis set should contain all quantum 
states of the complete system and, consequently, only transitions among quantum 
states are forming the kernel used to construct the response functions associated 
with the subsystems.  

Thus, at time to one assumes that the object and detector systems are prepared 
in the quantum states |ϕ(S) > and |φ(D)>, respectively; this is equivalent to give a set 
of initial amplitudes for both subsystems. In Hilbert space, the state prepared at to is 
the product |ψ(to)> = |φ(D)> |ϕ(S) >. The time ordering operator 

! 

ˆ T  allows writing the 
time evolution of the global system |ψ(t)> as:  

 
 |ψ(tf)> = U(tf,to) |φ(D)> |ϕ(S) > =  
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! 

ˆ T {exp[-(i/  h ) dt'
to

t f

!  

! 

ˆ H S-D(t´)} |φ(D)> |ϕ(S) > = 

 

! 

ˆ T {exp[-(i/  h ) dt'
to

t f

!

! 

ˆ H S-D(t´)}∑j∑k ajbk|jS >|kD> =  

 ΣjΣkΣj’Σk’ aj(to)bk(to) U jj'
kk ' (tf, to)|j'S>|k'D>  (9.2.5) 

 
The initial conditions are U jj'

kk ' ( to,to)=! jj' ! kk '  meaning that the evolution operator is 
the unit operator at initial time.  

To read this equation consider first the sums ΣjΣk that concerns the amplitudes 
at initial time aj(to)bk(to) that multiply the matrix elements of the evolution operator 
U jj'

kk ' (tf,to) for fixed j’,k’ labels. Thus, for a given final time tf, this matrix element 
corresponds to the transition amplitude for the concerted transitions k→k’ and j→j’ 
cumulated for time tf-to via all possible mechanisms compatible with the symmetry 
rules of Hilbert space. If this matrix element were zero, the amplitudes aj’(tf) bk’(tf) 
will be zero. Let look at this point in more detail in order to be able to check those 
amplitudes that differ from the initial ones. 

The point is to rearrange the last term in eq.(9.2.5) to make the initial base |jS > 
|kD> appear in the right order. In doing so, comparisons between initial and final 
states can easily be done. The completeness of the basis permits a recasting of the 
four dummy indexes and the expression (9.2.5) can be rewritten as 

 
 |ψ (tf)> = ΣjΣk (Σ j '  Σ k '

 a j ' b k '

 U j' j

k ' k (tf, to) ) |jS>|kD> =  
 ΣjΣk aj(tf) bk(tf) |jS>|kD> (9.2.6)  
 
The result can be seen as a rotation of the state vector provoked by interactions (the 
base states are kept fixed). This result is rigorous provided entanglement can be 
neglected at the recording level. The case when entanglement is important will be 
discussed later on.  

The full interaction produces changes in quantum states as time progresses, 
reflected as just numerical changes in the complex coefficients:  

 

 {aj bk}={aj (t0)bk(t0)}!   
 {a’jb’k} = { aj(tf) bk(tf)}.  (9.2.7) 

 
In the standard measurement theory, the matrix elements U jj'

kk '  are obtained by 
applying the von Neumann operator, defined by Zeh, H. D.  (Found.Phys. 1970, 1, 
69-76 ) as:  
 
 U(vN) jj'

kk '  = ! jj' U jj'
kk ' .  (9.2.8) 
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The idea behind this latter equation is that the object system is put into a stationary 
state (actually a base state) by the measurement and remains there henceforth. As a 
consequence, it states that consecutive measurements of the same state return the 
same eigenvalue.  This model is not retained in our approach; from the perspective 
developed in this book such hypothesis is not even wrong, it is simply non-
commensurate.  

On the contrary, what can be measured in our approach is the set characterizing 
the transitions between the base states (stationary states), e.g. Balmer’s series of the 
hydrogen atom spectra, not even one line can be represented with one eigenvalue.  

It is apparent that the simplicity reflected by the change {aj bk}!{{a’jb’k}} is 
due to basis completeness. The problem now is to show if this transformation 
actually allows us to define a measurement process that, while retaining the unitary 
time evolution of the whole system, would permit a definition of wave functions 
for both the measuring apparatus and for the measured system. The interaction 
pattern induced by the measured object wave function is registered, as it were, in 
the resulting recording {bk(t)}. While the von Neumann operator puts the object 
system in a basis state, the present model in contrast puts this system in a new well-
defined linear superposition. The set of relative phases is conserved. 
The final result elicited by the relation (9.2.6) can be written in a self-evident 
manner as 
    |ψ (t)> - |ψ(to)> =  
   ΣjΣk  {aj(t) bk(t)} |jS>|kD> - ΣjΣk {aj(to) bk(to)} |j

S>|kD> =   
   ΣjΣk { aj(t) bk(t) - aj(to) bk(to) } |jS>|kD>  (9.2.9) 
 
This is an exact result. Let us work out now a simple example (in the spirit of the 
linear response approach). 

Consider state k’ with amplitude bk≠k’(to)=0 and aj≠j’(to)=0. The root states are 
label with k’ and j’ respectively. Now, let us take in the spectra of the measuring 
device an energy level k and for the measured system level j such that the transition 
k’ to k is compensated by the transition j to j’. This means that the global system 
can end up in a state aj’(t) bk(t) |jS>|kD> after having interacted from state  aj(to) 
bk’(to) |jS>|kD>; by construction, energy is conserved at the Fence. Thus, it is 
sufficient to probe the state bk(t) |kD> to identify the k-level and since we know the 
initial j’-level the information about the j-level follows. Because we know the 
spectra for both systems, action can be taken to restore the quantum state of the 
measured system if you wanted it. A similar action could be taken with the 
measuring apparatus. 

The basic principle of measurement is hence realized at the Fence. If you keep 
tinkering in Hilbert space, the most extravagant conclusions could be achieved 
because neither energy conservation, nor other symmetry properties could naturally 
be taken into account. 
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The matrix elements of the evolution operator can be cast in terms of the 
dipole-dipole approximation: {aj(tf) bk(tf)}. 

 

 U jj'
kk ' (t,to) =! jj' ! kk ' -

 (i) dt'
to

t f

! {(1/2) Dkk ' t'( )!E jj'

S
t' )( )+  

 (1/2) Ekk'

D
t'( ) !Sjj' t'( ) }+…  (9.2.10) 

 

S
jj'

t( )  and D
kk'

t( ) are matrix elements of the transition moment operators, while 

E
D

kk'
t( )  and E

S

jj'
t( )  are the matrix elements of the field operators, all operators are 

in the interaction representation. The matrix elements D
k ' k(t) are products of time 

independent matrix elements Dkk ' = k µ
D
k'  and the phase factor exp(i(Ek-

E
k '

)t/  h ), with an analogous expression for S j ' j(t).  
The correlation function F(t,to) is defined as: 
 
 C(t,to) = <ψ(to)| (|ψ(t)>- |ψ(to)> ) = <ψ(to)|ψ(t)> - 1 
  (9.2.11) 
Calculating this quantum overlap function with the initial quantum state, one gets a 
sum of two amplitudes, named below as C(D[S]) (i.e. a complex number related to 
changes in the detector quantum state after interaction with the system) and 
C(S[D]) (i.e. a complex number related to changes in the system wave function 
after interaction with the detector). For the particular model, the amplitudes 
C(D[S]) and C(S[D])  are defined to first order by  equations (10) and (11),  
  C(D[S]) = <φ(D) |D[S] > =  

 (-i/2) Σk  Σ k '
 bk* b

k '
 (Σj Σ j '  aj* a j '  dt'

to

t f

!

 

 
Ej ' j

S
t'( ) ⋅ D

k ' k(t’)) = Σk bk*(to) b' k(tf) (9.2.12) 
This equation shows that the object wave function is imprinted in the b' k 
coefficients. The new wave function for the measured system reads: 
 
 C(S[D]) =  < ϕ(S)|S[D]>= (-i/2) Σj aj* Σ j '  a j '    

 × (Σk Σk´ bk* bk´  dt'
to

t f

! E
k' k

D
t'( ) ⋅ S j ' j(t

' )) =  

 Σj aj*(to) a’j(tf) (9.2.13) 
 
The measuring device put the imprint on the wave function via the final coefficient 
a’j. Equation (10) and (11) above are valid until time tf, which is the time when the 
interaction is completed, the Hilbert space evolution is broken at this point. Note 
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that the time integral contains the term exp{i(Ej
S - E j '

S +Ek
D-E

k '

D ) t´}. This factor 
ensures energy conservation. Under resonance conditions, namely, Ej

S- E j '

S + Ek
D-

E
k '

D equals zero; the contributions from the integral increase proportional to the 
interaction time interval, tf -to. For those combinations of levels that are far off 
resonance, the integrand oscillates too fast leading to zero contributions.  

The correlation function defined in eq.(9.2.9) probes the time evolution of the 
non-zero initial amplitudes, namely the complete initial quantum state of the 
system S. This process requires full information that, in most cases, is not easy to 
gather or is not necessary for the purposes of the experiment you want to carry on. 
A less detailed correlation function that probes the amplitude at some particular 
base state, say |nS>,  is defined as the modulus square of the projection  <nS|ψ (t)>: 

 
 CnS(t) = |<nS|ψ (t)>|2 =  
 |anS(t)|2 Σk bk*(t) bk(t) = |anS(t)|2 (9.2.14) 
 
To get the last equality implies the quantum state of the measuring system to be 
normalized to one at the time an experiment is performed to measure |anS(t)|2.  

Consider sets of laser pulses peaked around definite frequencies. One is used to 
prepare the quantum state of the system of interest a series of other pulses is used 
to probe the time evolution via |anS(τ)|2. The preparation is done at time to; after a 
time lag τ another laser pulse tuned to a spectral response of the root state |nS> is 
sent and the spectral response measured in intensity. According to the 
interpretation given in Ch.2, CnS(τ) describes the temporal change of the relative 
intensity for the spectral response from the nS–root base state. This is a typical 
pump-probe experiment.  

 After measured and measuring systems are parted, a separation of {a j
'bk
' } into 

the sets {a' j} and {b' k} is the natural procedure. The sets of coefficients 
characterize the quantum state of the respective subsystems. This follows from the 
structure of equation (10) and (11) above. This result agrees with the cluster 
decomposition hypothesis commonly used in quantum field theory [19]. One 
define the functions |D[S] > and |S[D]> after the time lapse tf-to by the new set of 
amplitudes 

 |D[S]>= Σk (-i/2)
 
dt'

to

t f

! (Σj Σj´ aj* a j '  Ej ' j

S
t'( ) )⋅ 

  (Σ
k '

b
k '

D
k ' k(t’))|kD> =Σk b’k|kD>  (9.2.15) 

 

 |S[D]>=Σj (-i/2) dt'
to

t f

!  (Σk Σ k '
 bk* b

k '
E
k' k

D
t'( ) )⋅ 

 (Σj´ a j '  S j ' j(t’)) |j
S> = Σj a’j|jS>  (9.2.16) 
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The detector term (Cf. D[S]) represents the recording on the measuring apparatus 
of the interaction with the measured system. The detector contains now all allowed 
transitions produced by the fields of the object system and nothing else. In fact, as 
eq. (9.2.15) shows, it contains the complete imprint of the object wave function as 
prepared before interaction via the terms ΣjΣj´ aj* a j ' Ej ' j

S
t'( ) . The changes produced 

by interactions with the system have no intrinsic randomness. Moreover, each one 
of the b’k terms embodies the interactions with the incoming S-system state; this is 
a holographic type of interaction.  

The quantum state of the object system, after interaction, has imprinted (see 
S[D]) the measuring device wave function via terms, Σk Σ k '

 bk* b
k '
E
k' k

D
t'( ) . This is 

the term that modulates the object wave function after interaction. Here, again, 
everything is under control. At this stage, where one considers one system wave 
function, there are no random effects related to the interaction within this model.  

The quantum amplitudes in Hilbert space, obtained from eq. (9.2.5) involve 
states ranging over the complete energy space. Now, if we want to come back to 
real space-time, energy conservation is to be imposed thereby eliminating those 
amplitudes on base states that cannot be “populated” with the available energy. The 
constraint is introduced in the next section. Note, however, that the amplitudes are 
modified in Hilbert space where thermodynamics arguments do not apply. 

So far energy conservation is concerned, the present model can be made energy 
conserving. In an energy basis, each basis element |jS>|kD> is asymptotically 
related to the energy label Ej

S+Ek
D, and for the set {ajbk} the energy of the 

combined state before interaction is E({ajbk}) taken as equal to the expectation 
value of Ho. After the systems become asymptotic again the energy E({aj’bk’}) is 
the expectation value of Ho over the wave functions given by the eqs. (9.2.14) and 
(9.2.15) recast in terms of the final  amplitudes ({aj’bk’}). For the global system, 
energy is conserved. The following two relationships hold for the energy 
partitioning: ΔES = Σj(f(a' j)-f(aj))Ej

S and ΔED = Σk(f(b' k)-f(bk))Ek
D, where f(bk), for 

instance, is |bk|2. These deltas represent the change in energy undergone by each 
subsystem after the interaction. The total energy change is ΔES+ΔED= 0. As a result 
of the measuring interactions, the changes in the measured system are correlated to 
the changes in the recording apparatus. What really matters, in so far as measuring 
is concerned, is the energy balance: ΔES+ ΔED = 0. If there were no energy 
reshuffling among subsystem states, there would be no measurable effect. 

Total linear momentum is also conserved for the present model. Thus, even if 
the energy “reshuffling” is such that no energy exchange can be detected, the linear 
momenta of the measuring and measured systems may change while conserving 
the total momentum. Elastic scattering is a prototype for such exchanges. 

In conclusion to this section, in view of the initial conditions imposed to the 
system, it is apparent that a measuring of one subsystem by another is possible 
after they have interacted. The problem now is to amplify the effects by using other 
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layers of measuring devices giving signals on the laboratory level.  We will discuss 
some aspects to this problem below. 
 
 
9.3. Measuring wave functions 
 
The definition retained for a quantum detector is well adapted to a classical view. 
The effective quantum state the detector is left, reflects all amplitudes the measured 
system was prepared in, Cf.eq.(9.2.14). The state reflects a past unitary evolution, 
which is totally different from the standard Copenhagen view.  We have explicitly 
stated that entangled states do not make part of the base states. 

What about entangled states? These states are those quantum mechanics 
can show that are fundamentally different from classical physical world. In the 
following section we continue the analysis of Scully et al. paper that allows us to 
come back to entanglement. 
 
 
9.3.1. Measurements including entangled states 
 
One enters in mine fields whenever complementarity arguments are discussed. 
Those are the historic remnants of early days quantum mechanics. The particle 
view inserted in descriptions of phenomena leads to most weird aspects because 
one is mixing two non-commensurable spaces.  

Let us stick to the quantum state description we have introduced in our 
present view from the Fence and pursue the analysis of Scully’s et al. paper 
including now cavity states that are necessary when the physical devices are put 
before the second double slit screen. After the first screen the beams are collimated 
by sets of wider slits. The point is that the quantum state is the same for both 
beams; they are prepared in the same manner. A laser beam is set up perpendicular 
to the propagation direction from the slits in their way to two cavities that have no 
interaction among themselves; the beams continue propagate until the end of the 
cavity and out to interact further away with the second two-slit screen. 

The key is to calculate the beam quantum states as they reach the second 
screen. We know that if they are equal in all respects there will be an interference 
pattern. If they come out in different quantum states due to the interaction with 
each cavity then, depending on the degree of difference, the interference pattern 
will fade away (See Figure 3 of Scully et al.). 

Before coming to the quantum state generated by the laser observe the 
quantum states associated to the beams. They correspond to |Hole-1> and |Hole-2> 
states in their linear superposition that we write again: 

 
 |Φ> = C1 |Hole-1> + C2 |Hole-2>  
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where C1 = <Hole-1|Φ> and C2 = <Hole-2|Φ>. For the space amplitude (wave 
function) multiplying the I-frame quantum state |Ψ>: 

 

  <x,y,z|(x>xS)> |Ψ>= {C1 exp(iγ1) <x,y|1>  

 exp(i(kxx + ky1(y-D)) + C2 exp(iγ2) <x,y|2>  

 × exp(i(kxx + ky2(y+D))}|Ψ> (9.3.1.1)  

 

At the region covered by the laser there is an interaction so that the excited state 
associated to the internal part of the I-frame system |Ψ*> is assumed to have a 
sufficiently long lifetime. Thus, at the entrance of the cavities one has the quantum 
state K: 
 
 K = {C1 exp(iγ1) <x,y|1> exp(i(kxx+ ky1(y-D)) +  

 C2 exp(iγ2) <x,y|2> exp(i(kxx + ky2(y+D))} C(Ψ*) |Ψ *> + 

 {C1 exp(iγ1) <x,y|1> exp(i(kxx+ ky1(y-D)) +  

 C2 exp(iγ2) <x,y|2> exp(i(kxx + ky2(y+D))} C(Ψ) |Ψ> 
  (9.3.1.2) 
We take then C(Ψ*)≈1 and C(Ψ)≈ 0. But you cannot erase the base states! 

Because we want to tinker with two independent cavities, rearrange the 
quantum state to make appear the beams: 

 
 K = C1 exp(iγ1) <x,y|1> exp(i(kxx+ ky1(y-D))  

 {C(Ψ*) |Ψ *> + C(Ψ) |Ψ>}+ 

 C2 exp(iγ2) <x,y|2> exp(i(kxx + ky2(y+D))  
 ×{C(Ψ*) |Ψ *> + C(Ψ) |Ψ>} (9.3.1.3) 
 
For real space separated cavities the quantum state along the beams can be 
separately coupled in the following manner: 
 
    Beam-1: [|Ψ> |Ψ *>] → [|Ψ>|1102>  |Ψ*>|0102>]  
  Beam-2: [|Ψ> |Ψ *>] → [|Ψ>|0112>  |Ψ*>|0102>] 
 
The base state |Ψ>|1102> corresponds to one photon at cavity 1, zero at cavity 2; the 
energy is available in the photon field. The base state |Ψ*>|0102> corresponds to an 
excited state internal I-frame system coupled to the electromagnetic vacuum. Both 
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states have the same energy and can be coupled easily by an EM field of frequency 
in a neighborhood of |1102>. The corresponding quantum state is an entangled state. 

In order to make contact with Scully’s paper, the quantum states are 
decomposed along beam representations. The quantum state takes on the form: 

 
 <x,y,z|Beam-1> = C1 exp(iγ1) <x,y|1>× 
 exp(i(kxx+ ky1(y-D))  (C(Ψ;1102)   C(Ψ*;0102>)) 
  × [|Ψ>|1102>    |Ψ*>|0102>]  
 <x,y,z|Beam-2> = C2 exp(iγ2)  
 <x,y|2> exp(i(kxx + ky2(y+D)) (C(Ψ;1102)   C(Ψ*;0102) 
 × [|Ψ>|0112>    |Ψ*>|0102>] 
 
Remember that (C(Ψ;1102) C(Ψ*;|0102>)) [|Ψ>|1102>  |Ψ*>|0102>] is a linear 
superposition (scalar product between row amplitude vector with column base set 
states. And, in what follows we separate the terms just to simplify the writing. 

The interaction with the cavity field put a label onto the base states of the 
external quantum states. The base sets have one base state element in common: 
|Ψ*>|0102>. Therefore, if we manipulate the system in such a way that the state is 
defined by C(Ψ*;0102) = 1, then C(Ψ;1102)=0. This is Case 1 with the quantum 
state impinging at the second screen given by: 

 
 <x,y,z|Beam-1> = C1 exp(iγ1) <x,y|1> × 
  exp(i(kxx+ ky1(y-D)) |Ψ*>|0102>  
 <x,y,z|Beam-2> = C2 exp(iγ2) <x,y|2> × 
  exp(i(kxx + ky2(y+D)) |Ψ*>|0102> 

 
As a matter of quantum mechanical fact, once the beams are prepared in the way 
described they form a linear superposition: 
 
 C’1exp(iγ1)<x,y|1>exp(i(kxx+ ky1(y-D)) +  
 C’2exp(iγ2)<x,y|2> exp(i(kxx + ky2(y+D)) 

 
This term multiplies the base state |Ψ*>|0102> that carry the information about the 
state of the resonance cavities. The conclusion is simple: for this case, interference 
pattern will show up. And it will be the same if C’1= C1 and C’2= C2 as if nothing 
was put between screen one and the recording device. 
 
Case 2 corresponds for example to a photon left at cavity one. The quantum state 
with C(Ψ;1102)=1 and C(Ψ*;|0102>=0 reads as follows: 
 
 <x,y,z|Beam-1> =  
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 C1 exp(iγ1) <x,y|1> exp(i(kxx+ ky1(y-D)) |Ψ>|1102> 
 

For Beam 2, because the amplitudes of the cavity field are determined by 
C(Ψ*;|0102)=1 one gets: 
 

  <x,y,z|Beam-2> =  
  C2 exp(iγ2) <x,y|2> exp(i(kxx + ky2(y+D)) |Ψ*>|0102> 
 

Once the system leaves the cavity we have the quantum state meaning with this 
statement that theere is no presence in the assigned volume: 
 
 | Case 2 >= C1 exp(iγ1) <x,y|1>  
 × exp(i(kxx+ ky1(y-D)) |Ψ>|1102> +  
      C2 exp(iγ2) <x,y|2> × 
 exp(i(kxx + ky2(y+D)) |Ψ*>|0102> 

 
It is apparent that the interference pattern will not show up because the overlap 
<1102|0102> is zero. Of course you realize that the interference pattern is still there 
albeit invisible! Of course, it is invisible to the detecting device, but the quantum 
state originating the interference is right there. The information has not been 
erased. The intensity pattern does disappear but the quantum state has it there. 
 
 
9.3.2. Entanglement 
 
Entangled states cannot be put as simple products. The example found above 
permits seen the mathematical form: 
 
 (C(Ψ;1102)   C(Ψ*;0102))[|Ψ>|1102>   |Ψ*>|0102>] =  
 C(Ψ*;0102) |Ψ*>|0102> + C(Ψ;1102) |Ψ>|1102> = 
  |Entangled> 
 
The stationary state is characterized by C(Ψ*;0102)= C(Ψ;1102)= 1/√2. For this 
state, the electromagnetic field never has the total energy used to excite the ground 
state. A time independent situation would produce an infinite lifetime. However, 
any frequency ω in the vicinity of the resonance frequency ω show a time 
dependent quantum states (cos ωt  sin ωt) and its orthogonal companion (cos ωt  -
sin ωt); this state is normalized to one, at all times.  

The writing of |Ψ*> implies that for a particular material system, the lifetime of 
the excited state is sufficiently long to allow for experimental manipulations at the 
Fence. 
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Now return to Case 2 above. The base state |Ψ*>|0102> had an amplitude equal 
to zero so that the entangled state is: (1  0) [|Ψ>|1102>  |Ψ*>|0102>]. The photon 
appears as if it were at cavity 1. What do happen if you design an experimental 
device that the quantum state is rotated into (0  1)-state?  

Well. You have “erased” the response function at cavity 1 and constructed the 
quantum state of Case 1! The material support of the interference pattern has not 
been touched thereby implying that the Case-1 pattern emerges again. In fact, it 
was always there. And you can play around because of the entanglement between 
the internal quantum system and the photon field. You can delay as much as you 
want provided the entangled state is still there! Tinkering in a similar manner with 
cavity 2 one will get the same results.  

The only thing you have to be able to calculate is the quantum state entering the 
scattering centers (slits) and the characteristics of the interaction. Quantum 
mechanics is about quantum states not about quantum particles or waves. The 
complementarity principle makes sense when you insist introducing (quasi) 
classical concepts of particles, waves and paths. If you do not need them, as we 
show here, then that principle is no longer useful.  

 
 
9.3.3. Einstein-Podolski-Rosen thought experiment 
 
The base states necessary for a discussion of the famous EPR-experiment can be 
reduced to three generic ones. A two-label system with total spin S=s1+s2 = 1 with 
zero eigen value along the 3-direction (arbitrary): sz1+sz2 = 0. The quantum state 
projected in configuration space with base ket | x1,x2> is a symmetric space 
function φΣ(x1,x2) = <x1,x2|φΣ>. There are two 1-systems with base sets: φ1(x) and 
φ2(x’) each one associated to a spin 1/2 spinor, they are called asymptotic systems. 
The physical process consists in a transition where the amplitude at the complex 
system base state changes into amplitude (equal one) for the asymptotic systems. 
Thus, from one I-frame we go into a two I-frame systems in real space. Let us 
designate the momentum associated to I-frame one by k1 and k2 for the other. The 
simplest procedure is to take the origin of the global I-frame so that P=0 and linear 
momentum conservation forces k1=-k2. At the antipodes, k1⋅x=-k2⋅(-x) and the 
plane wave states are equal there. The spin quantum state for I-frame 1 corresponds 
to the linear superposition (c1 c2)[α   β ] while the second I-frame system should 
have (c2  –c1)[α   β], namely an orthogonal quantum state. 

There are two generic situations that would permit a simple discussion of EPR 
case. First, we do know that the 1-system has a well-defined quantum state and the 
asymptotic states are necessarily correlated by linear momentum conservation. 
What about spin measurement? In this case, any measurement telling the 
experimenter the quantum state is (c1 c2) (I-frame 1) the person knows that a 
measurement carried out simultaneously for I-frame 2 would yield (c2 –c1). There is 
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no signal to be sent! Just the knowledge that will permit to prepare the state (c2 –c1) 
at I-frame 2 because you knew the state (c1  c2) at I-frame 1. The systems were 
initially correlated. That is all. 

Second, you do not know about the correlation. If you measure the quantum 
state of a system that happen to pass via your measuring device, the result being (c2 
–c1), then that’s it. 

Now, if you keep measuring the system prepared many times and the source 
happen to be of the kind we discussed above, then the experimenter will measure 
either by the row vector (c2 –c1) or (c1  c2) until this person will realize that there is 
a correlation source at the origin. 

The EPR-case just dissolves into nothing more than a misunderstanding. As it is 
well acknowledged today, EPR premise is a sufficient condition; it is not a 
necessary one.  
 
 
9.3.4. Delayed choice experiments 
 
During the “thought” experiment era, Wheeler proposed a challenging one 
christened by him as a delayed choice experiment (J.A.Wheeler in Quantum 
Theory and Measurement, edited by J.A.Wheeler and W.H.Zurek, Princeton 
University Press, NJ, 1984; pp. 182-213). Today, families of experimental setups 
can be constructed with beam-splitters, mirrors and photo-detectors so that the 
ideas underlying “thought” experiment could be tested. Recently, it was reported 
an experimental realization of Wheeler’s delayed-choice thought (“gedanken”) 
experiment (V. Jacques et al. Science (2007) 315, 966-968); so far results 
descriptions are made with the help of particle paradigm. In what follows, a 
discussion in terms of quantum states is introduced.  A comparison of both 
approaches is given at the end of this section. 

The setup mixes classical elements distributed in real space with quantum 
mechanical “functionalities” proper to a Hilbert space representation. We define 
first the basic elements of the model and thereafter construct wave functions in 
quantum mechanical terms; finally, a quantized EM-field representation is used to 
further discuss the experimental results: 

 
1. Beam splitter (BS). Given a quantum state |Ψ> impinging on a BS, after 
interacting there the quantum state related to vertex-1 is given by a linear 
superposition:  
 |1>=<1a|Ψ> |1a> + i<1b|Ψ>|1b>   
 
Thus, there is a transition from the quantum state |Ψ> to |1>. Note that in the 
Schemes below this quantum state relates to a single-photon pulse in real space. 
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The problem is the calculation of the quantum state that will interact with the 
detectors D1 and D2 for the setups sketched in the Figure (below): 

 

 
The base state |1a> is directed along vertices 1-3, sharing the direction of the initial 
photon pulse state; base state |1b> (direction 1-2) is orthogonal to |1a> and affected 
by a phase factor exp(iπ/2) = i to signal this change. For a beam-splitter acting as a 
half-silvered mirror the amplitudes take on values |<1a|Ψ>| = |<1b|Ψ>| =1/√2. 
These numbers signal the way you have prepared the beam splitter, i.e. a perfectly 
balanced BS.  
 
2. Mirror (M) at vertex-2, oriented as if it were parallel translated with respect to 
the BSinp, takes quantum state |1> into quantum state |2> on the base state [|2a>  
|2b>]: 
 |2> = |2a><2a|1> +  i<2b|1> |2b> =  
  (i<2a|1>  <2b|1>) [|2a>  |2b>] 
 
In the particular case signaled in Scheme (a) we have |<2b|1>| = 0 because the 
mirror, in real space, changes the beam direction only. The quantum state |2> maps 
onto (i  0) [|2a>  |2b>]. 
 
3. Mirror at vertex-3. The quantum state is given in the local base set as: 
 
 |3> = |3a><3a|1> +  i<3b|1> |3b> 
 
The amplitude <3a|1> must be zero due to the physical property of this mirror. The 
quantum state  |3> looks like (0   i) [|3a>  |3b>].  

 



 QUANTUM PHYSICAL CHEMISTRY 
 
38 

 
4. Quantum states |2> and |3> propagate toward vertex-4 each from a different 
direction. At vertex-4 there is no material system to interact either with quantum 
state |2> or |3>, thereby implying that the detector D1 will interact with quantum 
state |3>, and detector D2 would do it with the quantum state |2>.  

Thus, detector D1 will sense a response controlled by the amplitude at |3b> 
while D2 will sense a response controlled by the amplitude at |2a>. It remains to 
calculate these amplitudes as a function of the input state. This is done E&E-9.3-x 
below. 
 
E&E-9.3-x Calculate states |2> and |3> as a function of input data for case (a) 
Replace in the generic definitions of these quantum states the ket obtained at vertex-1, |1> 
 
 |2> = |2a><2a|1> +  i<2b|1> |2b> = |2a><2a|1> +  0 |2b> = 

  |2a><2a|{<1a|Ψ> |1a> + i<1b|Ψ>|1b> } + 0|2b>  
 

Do the algebra and bear in mind that <2a|1b> = <2b|1a> = zero because in a rigged Hilbert 
space base vectors for different directions are orthogonal. The amplitudes <2a|1a> and 
<2b|1b> are delta functions with origin at the crossing points. We simplify the notations 
and take them equal to 1 there. The result is: 
  
 |2> = |2a> <1a|Ψ>  + 0 |2b>  

 
By construction |<1a|Ψ>|=1/√2 and the spectral response intensity at detector D2 will be 
half the intensity of the input pulse. 
A similar procedure applies to state |3> to get: 
 
 |3> = 0 |2a> +  |3b> i<1b|Ψ>   
 
Here, again, the model we are discussing leads to |<1b|Ψ>|=1/√2 and half of the spectral 
response obtains at detector D1. 
 

The results obtained above are correlated in a typical quantum mechanical 
sense. For, if something happens to the quantum state related to the beam 1-2, 
before coming in contact with M-2, namely a change of <1b|Ψ> amplitude due to a 
change in the properties of BSinput this will be echoed via the mirror at vertex-3. 
Thus it will affect measurements at detector D1 that is found along direction 3-4. 

Following Wheeler’s spirit, a second BS is required at the cross of directions 
associated to |2a> and |3b> base states. The setup is depicted in Scheme (b). 

The distances 124 and 134 are identical by construction; the time-of-flight is 
equal for two identical light signals, in real space. The propagation along these 
paths brings the quantum states at point 4 simultaneously. At the crossing point 4 
the input states are mixed by BSoutput; naming the base state pointing to detector D2 
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as |5> and |5’> in the direction of D1, and selecting a perfectly balanced BSoutput, 
the quantum states after interaction map as follows: 

 
 |2> →  (1/√2) ( |5> + i |5’>)  
 |3> → (1/√2) ( i|5>  +   |5’>)  
 
At vertex 4 we denote the incoming beams by |4a> → |2> and |4b> → |3> to bring 
harmony with notation by Wheeler. The state |3b> is related to M-3 via: 

 

 |3b> → iR|4a>;  

|4a> relates to M-1 via:  

 |2a>→ iR|4b>.  

 

The reflection amplitude R for the mirrors is R=1. 

Now, after going through BSoutput there are two equations for beams |4a> and 
|4b> 

 |4a> →  (1/√2) ( |5> + i |5’>) 

 |4b> →  (1/√2) ( i|5> +  |5’>) 

 

Picking up the definitions of base states |2a> and |3b> we form the quantum state in 
a unified base set: 

 |Φ> → |3b> i<1b|Ψ> +  |2a> <1a|Ψ> =  

    iR|4a> i<1b|Ψ> + iR|4b> <1a|Ψ>  

 

For the case we had chosen of perfect BS, |<1b|Ψ>| = |<1a|Ψ>|= 1/√2, the result is: 

 

 |Φ> → 1/√2( i2|4a> +i||4b> = 1/√2( -|4a> +i|4b> 

The outgoing states are used now: 

 |Φ> → 1/√2( i2(1/√2) (|5> + i |5’>) +i (1/√2) (i|5> + |5’>) 

Calculating the sum one gets: 1/√2( - (1/√2) ( |5> - (1/√2) |5> -  i |5’> +  i|5’>) and 
the final assignment reads as: 
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 |Φ> → = (1/√2){(-2/√2)|5> + 0i|5’>} 

The detector put along direction |5’> cannot detect a signal because the amplitude 
is zero, detector D2 gets all signal. 

The delayed choice issue can be stated as follows. For a 1-photon experiment, 
because it takes a finite lapse of time for the quantum state to propagate and arrive 
at vertex-4 the question arose whether an experiment for which one delays the 
positioning of BSoutput until the last “femtosecond” before arrival will show the 
same result compared to other one where BSoutput was there all the time.  

This question makes sense if we look first to the result obtained for Scheme (a). 
For now, there is one and only one event at either detector. The conclusion may be 
that either the quantum state is given by C1|2> or C3|3>; the alternatives (linear 
superpositions) when seen from standard logics are exclusive. You have in this 
case C1=1 and C3=0, or vice versa. You have jumped to this conclusion for the 1-
system case because you detect the energy exchanged at only one detector.  

Now comes in the delayed experiment. Because the quantum state “collapses” 
on to say state C1|2>, and now “knowing” this we put a BSoutput before the quantum 
state propagates to vertex-4 the result will be the linear superposition: 

 

 |2> → |5> <5|2> + |5’> i<5’|2> →  

    |5> i<5|2a> + |5’> i2<5’|2a> 

 

Because base states |2a> and |5’> are orthogonal then <5’|2a>=0 and the result will 
be a click at D2 and for state |3> the click will be at D1. The final counting of N 
independent 1-photon samples will be N/2 evenly distributed. This model 
corresponds to a collapse of the wave function. The interaction between the 
ingoing quantum state with the input BS put the system either with state |3> or with 
state |2>, the dimension 2 of Hilbert space vanishes. For this model, after 
interaction with the output BS the system is thrown either on state |5> or |5’>. 

The quantum mechanical result, on the other hand, even if you put BSoutput at 
the last moment, will be zero-count at D1 and full-count at D2. 

 
 
9.3.5. Particle picture and delayed choice experiment 
 
The particle picture has not been retained in this book. Yet, it is a dominant view. It 
seems timely to introduce it via the master presentation made by Wheeler himself. 
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Referring to the fundamental discussions between Albert Einstein and Nils Bohr, 
Wheeler writes: 

“Of all the idealized experiments taken up by the two friends in their effort to win 
agreement, none is simpler than the beam splitter”. Note that our Schemes (a) and 
(b) replace Figure 4 from Wheeler paper. He continues: “With the final half-
silvered mirror in place the photoreceptor at the” lower left (D2 for the present 
case) “click-click as the successive photons arrive but the adjacent counter register 
nothing”; this corresponds to our D1 counter. “This is evidence of interference 
between beams 4a and 4b; or, in photon language, evidence that each arriving light 
quantum has arrived by both routes,” that is 134 and 124. “In such experiments, 
Einstein originally argued, it is unreasonable for a single photon to travel 
simultaneously two routes. Remove the half-silvered mirror”, (the one called 
BSoutput), as in Scheme (a), “one will find that the one counter goes off, or the other. 
Thus the photon has traveled only one route. It travels only one route, but it travels 
both routes; it travels both routes, but it travels only one route.” The text continues: 
“What a nonsense! How obvious it is that quantum theory is inconsistent!”  

So far goes Einstein’s criticism. The answer by Bohr as quoted by Wheeler is 
interesting: “ Bohr emphasized that there is no inconsistency. We are dealing with 
two different experiments. The one with the half-silvered mirror removed tells 
which route. The one with the half-silvered mirror in place provides evidence that 
the photon traveled both routes. But it is impossible to do both experiments at 
once”. 

It is not difficult to see that real and Hilbert space descriptions are mixed up. 
Whenever a particle description is introduced to describe quantum mechanical 
outcomes weirdness pops up. 

Quantum mechanics is about quantum states and their time evolution. They 
are related to material substrates in real space, no doubt, but as such they belong to 
Hilbert space. In this latter space, pictorial descriptions originated in our real world 
perceptions do not make sense. There are no quantum entities that can behave like 
particles or waves; see the comments made by P.Knight in Nature (395 (1998)12-
13). But according to the present approach, they behave as quantum states in 
Hilbert space. These latter can be diffracted and modulate interference patterns. 
This latter is taken as the signal of wave behavior in the standard texts. But, as 
water waves in a pond designed to mimic a two-slit set up, and electromagnetic 
waves in similar arrangement produce interference patterns, it does not mean that 
water waves are equivalent or equal to electromagnetic waves. Quantum states in 
particular situations do relate to patterns of interference. At detection, they 
exchange energy in quanta; this is a fact inferred by Planck. And as we saw in the 
two slit experiments discussed in section 9.3.1 as an event realizes at a given spot it 
is modulated by the wave function there. The “particle” and “wave” behavior are 
“simultaneously” in effect at the point where the click-event emerges. The 
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complementarity principle applies only to the real concepts of particle and wave. It 
has no relevance if a full quantum mechanical description is at work. 

The flaw in Bohr’s view lies in the assumption that the measuring device must 
be macroscopic and “reality”, the one emerging in our daily life world, to be 
communicated with every day language. But language grows as new “continents” 
are discovered and new words and concepts would find their way to the civil 
society beyond the jargon we employ in scientists’ societies. Material systems 
(macroscopic or microscopic) sustain all kinds of quantum states. Perceptions of 
change are rooted in changes of quantum states. These states are not always 
reducible to objects. We better get used to these developments instead of using 
non-sense language to talk about. 

 
 
9.4 What are Quantum States? 
 
S.Malin in a recent paper (Quantum Inf.Proc. 5, 233(2006)) raised this question 
and presented strong arguments against the ontic and the epistemic interpretations 
of quantum states. 
 Before closing this chapter we present a short discussion on these issues 
including Malin’s interpretation.  
 To get to the point, let us give three quotations from Malin’s paper concerning 
the ontic viewpoint:  

1) “…Einstein pointed out that the collapse, which he assumed took place on 
a t=const. hypersurface, means that the influence of the appearance of an 
elementary quantum events leads to an instantaneous (faster that light) 
propagation of the change in the value of the wave function everywhere on 
the hypersurface. Einstein tacitly assumed the ontic interpretation of the 
wave function”. 

2) “…the ontic interpretation is incompatible with Einstein’s principle of 
covariance.” 

3) Concerning Schrödinger cat paradox one reads: “According to the ontic 
interpretation the cat is in a state of superposition of being alive and being 
dead in various proportions that change as time goes by.” 

For the epistemic interpretation “the superposition says nothing about the cat, it 
speaks about us. It says that we don’t know how the cat is…” 
 The third interpretation try to overcome the “knower” by saying the 
quantum state is the place where the available or potential knowledge about the 
system is found. Malis propose three principles or working hypothesis: 
1) QSs represent knowledge available about the potentialities of a quantum 

system, knowledge from the perspective of a particular location in space; 
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2) Collecting all such perspectives is all what there is about a quantum 
system; 

3) “Whether or not the development of entangled systems involves an 
apparent superluminal connection, such connection can never be used for 
superluminal connection, such connection can never be used for 
superluminal transmission of information.” 

 The ontic point of view takes the QS to represent the material system itself. The 
epistemic interpretation denies a relationship with the material system to the extent 
a QS says something about our knowledge about the system. The QS as 
perspectives on an available knowledge about potentialities is a step along a 
direction away physics. 
 The crux of the problem locates in the particle model pervading these 
interpretations. As a matter of fact one may ask: do we need an interpretation of 
quantum states? 
 
 
9.4.1 Back to “our” quantum states 
 
Go back to the beginning of this chapter and read the allegory there. Now you 
better take it seriously into account. All the discussions given so far World allow 
you to get a more clear Picture of what a quantum state might be. 

We are in front of a real space state incorporating all information the EM field 
could grasp from the material system via its quantum state. Sustained by the photon 
field the quantum state makes an impront that can be translated in space at the 
speed of Light. The quantum state is broadcast in all directions if sufficient energy 
is made available. 

The quantum state can be copied into a material support appropriate to the 
systems. Light is one material system able to transport quantum status in full detail 
or partially. It is not knowledge which is being transported but information. It is not 
the supporting object which is translated but just the quantum mechanical element 
we name quantum state. 

A quantum state is a physical system in laboratory space. 
In Hilbert space, a quantum state is a foundational element in the construction 

of the theory. 
Modern Technology has open the way to manipulate and transport quantum 

states. 
 
 
9.5 Final remarks 
 
The replacement of objects (molecules, atoms) by quantum states sustained by the 
material constituents (electrons, nuclei) is a fundamental result. Quantum 
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mechanics provides the mathematical framework to develop the concept of 
quantum state. Classical physics permits studying objects. They are certainly 
complementary in scope. 

There people that have difficulties in understanding the difference between a 
material system and chemical quantum systems.  

To sense the difference look at the chemical systems identified by the formulae: 
H2+CO corresponding to two asymptotic states in the sense that they can be 
prepared in the laboratory independently of each other and then prepare crossing 
molecular beams. At the crossing, the material system is characterized by 16 
electrons and the sum of nuclear charges +16. The chemical system: H2-CO, formic 
aldehyde is certainly different from the asymptotic system but it has the same 
material composition: 16 electrons and +16 as the sum of nuclear charges. Of 
course, you may have the asymptotic system: H+HCO, H+H+CO, etc. Note that H, 
HCO, CO, etc. refer to substances (objects) that can be “bottled” and shelved in a 
laboratory. Quantum states referring to the same material system will naturally 
cover all possible chemistry. But you cannot shelve a quantum state equally easy if 
they relate to ecgited states. If you cannot see the difference quantum states and 
substances, I cannot help you. 

A given quantum state informs us about the possible relative responses with 
respect to a fixed base set. Using appropriate electromagnetic radiations we can 
manipulate it at will. The simutators have open doors to produce new substances 
and processes if they come to mastering the quantum World. 
 


