CONFOCAL MICROSCOPY

Jeremy Adler

Boulevard du Temple..... a busy street ?

. Uppsala University . Platform . Biological Visualization .

Daguerrotype (Paris, 1838)

Widefield & Confocal Microscopy

Widefield

Laser Scanning Microscopy (LSM)

Comparison Confocal & Widefield

Z series

3um steps 20x NA 0.8

Confocal

Widefield

. Uppsala University . Platform . Biological Visualization

Illumination

AREA

Build an image by scanning the single spot

Scanning optics In the confocal

Horizontal lines !

Note

Unstable laser or light detector

Round cells moving during image acquisition

Confocal – Clever Bits

1) spot of light scanned to build image

2) A pinhole in front of the detector Rejects out of focus light

Result – Optical Sectioning

Illumination - fluorescence

Lens

Fluorophores inside the illumination cones are excited

More excitation at the Focal plane

Objectives

Numerical aperture (resolution) Immersion medium: air, water, oil Corrections: spherical, chromatic Transmission

Magnification – not very important

Achromatic and Apochromatic Objective Correction Achromat Apochromat Lens Doublet Group Lens Triplet Group

60x Plan Apochromat Objective

Same magnification - different NA

. Uppsala University . Platform . Biological Visualization

Progressively open the pinhole

More light, but out of focus light

Fluorescent microspheres NA 1.4 oil objective pixels 45nm

Pinhole size and intensity

Pinhole Size: nucleus

LSM700 NA 1.4 oil

adjusted for equal maximum intensity

Poisson Noise

(confocal images)

photon count is usually unknown .imited by (i) time (ii) photobleaching & photodamage

Poisson Noise – how many photons ?

Single pixels in a timeseries

photons	128	64	32	16
mean	126.31	64.26	31.22	15.72
SD	11.81	7.66	5.57	3.91
sqrt	11.31	8.00	5.66	4.00

More Photons – increase laser power ?

But Fluorophore saturation

> More photons from fluorophores outside the point of focus

Improving Image Quality

Doubling the image acquisition time:

MORE PHOTONS, less variability

Confocal Illumination

monochromatic coherent

types: gas, solid, diode

Argon Ion

Krypton -Argon

Helium Neon

Helium Cadmium

543 nm, 633 nm

488, 568, 647 nm

353-361, 488, 514 nm

543 nm, 633 nm

Diode lasers 405, 488, 635 nm etc

individual lines

Lasers

The Photomultiplier tube (PMT) 1930s

One Photon hits photocathode emits photoelectron which cascades along the applification chain

Photon counting possible

- 1) Gain (voltage)
- 2) Zero offset

PMTs reach 30% quantum efficiency

How good are cameras?

Confocal; detectors

Where do pixels come from ?

Confocal ?

Pixels in Confocal Microscope

Scan Excitation Spot	Scan Excitation Spot	Scan Excitation Spot
РМТ	РМТ	РМТ
integrate PMT	integrate PMT	integrate PMT
Pixel 32	Pixel 24	Pixel 8

Pixels

The signal from the PMT is digitized

How large should pixels be ?

Nyquist sampling

theory

to reconstruct a pure sine wave, sample at least twice in each cycle, 2x the frequency.

Nyquist Pixel size: fluorophore and NA

an OPTIMAL button in confocal software calculates the (Zeiss) Nyquist pixel size

LSM700		Widefield	Nyquist	Confocal	Nyquist
	NA	xvnm	7 nm	x y nm	7 nm
5x	0.16	812	20181	381	9469
10x	0.5	260	1940	122	910
20x	0.8	162	650	76	305
40x	0.95	136	378	64	177
63x oil	1.4	92	277	43	130
63x water	1.2	108	348	50	163

In Practice: Compromise between

Image quality: noise & resolution V Acquisition time, bleaching, photodamage

Pixels – how large ?

IMAGING WITH LSM

MRC 500 confocal microscope

Fig 1. Diffusion of fluorescein from a micropipette into an agar block.

. Uppsala University . Platform . Biological Visualization .

Optical sectioning: Z series

Optical slice from certain depth in sample

Many slices from adjacent depths

reconstruction from slices

Z series - 3D rendered

Imaging with a Confocal

Fluorescence (excite 555nm)

Transmission (555nm)

Transmitted light: 4 laser lines (H & E staining)

405nm

488nm

555nm

Laser light is polarized

Transmitted: specimen can change polarization

Adjustable Polarizing filter in the Transmission Light path

. Uppsala University . Platform . Biological Visualization

Fluorescence (488nm) & Reflection (405nm)

Single cell –GFP(green) in a nanowire matrix

Skin Reflection confocal microscopy; 830nm laser

50um

Experimental Dermatology, Volume: 19, Issue: 3, Pages: 233-239, First published: 11 February 2010, DOI: (10.1111/j.1600-0625.2009.00983.x)

2 or more PMTs

Alexa488 Alexa488 & Mitotracker Simultaneous (both lasers) 488 & 555 Image 1 Image 2 Sequential Alexa488 Alexa488 & Mitotracker (single laser) 488 Alexa488 Mitotracker 555

Lambda Scan– linear unmixing – separate overlapping fluorophores

Linear Unmixing determines the relative contribution from each fluorophore for every pixel of the image.

ACE I	AUG 2
0.0	02
0.0	0.2
0.0	0.1
0.0	0.1
0.0	0.1
0.0	0.2
0.0	1.7
0.0	1.5
4.2	50.5
12.7	163.9
18.6	255.0
17.1	243.7
0.8	10.6
1.5	25.0
11.0	109.3
14.8	92.4
39.0	77.9
105.1	83.5
200.1	104,4

Light & Electron Microscopy : Flow Cytometry : Image Analysis

Spectral (lambda) scan with LSM (Zeiss)

Emission spectra for fluorophore or autofluorescence

QUASAR detector of LSM710 with 32 detectors

480	490	500	510	520	530	540
		30	30	Y.C.		
550	560	570	580	590	600	610
y C	3.0		50	20	20	30
620	630	640	650	660	670	680
30	20	20	20	Sa	SA	SA

Light & Electron Microscopy : Flow Cytometry : Image Analysis

RI matching: objective-specimen

ht & Electron Microscopy : Flow Cytometry : Image Analysis

Uppsala University . Platform . Biological Visualization . 5 Light & Electron Microscopy : Flow Cytometry : Image Analysis

doi: 10.1111/j.1469-8137.2010.03244.x

z [µm] Microsc Res Tech 2006 70(1) 1-9, Hell et al

Live imaging (time lapse)

Frame size in pixel:	frames/sec
2048 x 2048	0.03
1024 x 1024	0.13
512 x 512	0.53
256 x 256	2.00
128 x 128	5.00

Smaller images – faster

Line scan – 1 pixel wide – very fast

Fluorescent microspheres in a matrix confocal images

Light & Electron Microscopy : How Cytometry : Image Analysis

replace conventional pinhole & single detector With an array of detectors

Zeiss Airyscan –array of 32 detectors

Nikon NSPARC 5x% array Photon sensitive

Confocal.nl have a rescan confocal – fast, higher resolution

Higher resolution from array of detectors

. Uppsala University . Platform . Biological Visualization

POINT SPREAD FUNCTION- resolution

A sub resolution object becomes a blob in the image

- 1. NA of the objective
- 2. Size of confocal pinhole
- 3. Wavelength of emission
- 4. Refractive index matching

Point Spread Function (PSF) widefield and confocal

Techniques for the LSM and Live Cell Imaging

Photoactivation / uncaging

Fluorescence recovery after photobleaching (FRAP)

FRET Detection of in vivo Protein-Protein Interactions

CALI Chromophore Assisted Light inactivation

Light & Electron Microscopy : Flow Cytometry : Image Analysis

source/imaging/imaging_approaches_photomanipulation.shtm

Photoactivatable Fluorophores

- GFP activated by 413nm observe with 488nm excitation
- Pulse chase experiments

Science (2002), 297, 1873-1877

3 Replicate XZ Images

Nuclei in smooth muscle 3 round 1 elongated

XZ image made from Z series

Cause ?

Solution

protect the microscope from temperature changes

User:	pachocore
Scan Mode :	Stack
Scaling :	X:0.13 μm Y:0.13 μm Z:0.37 μm
Stack Size :	X: 135.86 μm Y: 135.86 μm Z: 13.85 μm
Scan Zoom :	1.7
Objective :	Plan-Neofluar 40x/1.3 Oil
Average :	Line 2
Pinhole :	Ch2-1 : 56 μm Ch2-2 : 65 μm Ch3-3 : 73 μm
Filters :	Ch2-1 : BP 420-480 Ch2-2 : BP 505-530 Ch3-3 : LP 560
Beam Splitters :	MBS-1 : HFT 405/514 DBS1-1 : Mirror DBS2-1 : NFT 490 DBS3-1 : None FW1-1 : None MBS-2 : HFT 488 DBS1-2 : Mirror DBS2-2 : NFT 545 DBS3-2 : None FW1-2 : None MBS-3 : HFT 488/543 DBS1-3 : Mirror DBS2-3 : NFT 545 DBS3-3 : None FW1-3 : None
Wavelength :	405 nm T1 30.7 % 488 nm T2 30.7 % 543 nm T3 29.7 %

Acquisition information: metadata

recorded with the image

Reuse same setup measurements

Pixel size: Objective's magnification Area scanned – ZOOM Number of pixels

In Practice

- 1) slide with every fluorophore acquisition settings
- 2) slides with single fluorophores bleed through
- 3) slide with no added fluorophores autofluorescence

Confocal v Widefield (Deconvolution)

- Optical sectioning pinhole, Z series Z series
- Variable magnification zooming
- Timeseries live imaging faster
- Motorized XY stage tiling
- Spectral scanning

Problems

- Slow
- Pinhole throws away photons
- Poor detectors
- Photobleaching

faster Capture more photons Higher quantum efficiency reduced

also

Image Deconvolution both confocal & widefield

Analyse your Images

Introduction to Image Analysis (2 days) February

February 21st (Wednesday) and 23rd(Friday) 2024 8 places

9.30-4.30pm

"That which is not measurable is not science" Rutherford

Aim

Appreciate the potential of image analysis & how to use the Fiji version of ImageJ – the most widely used freeware.

To register

Send

Name, email address, PI, billing code – fee 1600sek for 2 days.

To jeremy.adler@igp.uu.se

Introduction to Image Analysis Software May 2024

IAS 5 day course - no fee, 1.5 credits

http://www2.medfarm.uu.se/utbildning/forskarniva/for_doktorander/kurslista2024.html

Methods for Cell Analysis (MCA Autumn 2024)

http://www2.medfarm.uu.se/utbildning/forskarniva/for_doktorander/kurslista2024.html

References etc

Tutorial: guidance for quantitative confocal microscopy.

Jonkman, J., Brown, C.M., Wright, G.D. et al.

Nat Protoc (2020 April).

https://doi-org.ezproxy.its.uu.se/10.1038/s41596-020-0313-9

Seeing is believing – beginners guide to practical pitfalls in image acquisition

Pawley J Cell Biol, 2006, 172, 9-18

How to reduce background autofluorescence and improve confocal microscopy

Ben Libberton, Leica Microsystems

Learn how to Remove Autofluorescence from your Confocal Images | Learn & Share | Leica Microsystems (leicamicrosystems.com)

Websites

- Microscopy: Zeiss, Leica, Nikon, Olympus, BioRad
- Fluorophores: Thermo Fisher Scientific
- Filters: Chroma, Omega, Semrock

Spectra Etc

<u>https://public.brain.mpg.de/shiny/apps/SpectraViewer/</u> additional information : <u>https://brain.mpg.de/326043/spectra-viewer</u> https://www.thermofisher.com/order/fluorescence-spectraviewer

END

Confocal Components

Miniature objectives

Temperature Control

Image Quality Photon Noise / Poisson Noise / Shot Noise

Compare 2 sequential mages

ave=4

Number of photons Varies

- noise