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Abstract

The following article is intended as a survey of recent results at the interface of number

theory and superstring theory. We review the expansion of scattering amplitudes – central

observables in field and string theory – in the inverse string tension where elegant patterns

of multiple zeta values occur. More specifically, the Drinfeld associator and the Hopf algebra

structure of motivic multiple zeta values are shown to govern tree-level amplitudes of the open

superstring. Partial results on the quantum corrections are discussed where elliptic analogues

of multiple zeta values play a central rôle.
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1 Introduction

Around 1970, string theory was born out of an attempt to describe pion scattering, see [1] for a

recent historic account. Even though the rôle of string theory has changed a lot over the past 45

years – most notably from a model of hadrons and mesons to a candidate framework for quantum

gravity – its scattering amplitudes have been of constant interest. On the one hand, they provide

fertile testing grounds for string dualities [2] or possible phenomenological signatures of string

theory [3–5] in connection with a low string scale [6,7]. On the other hand, string amplitudes are a

prominent tool to obtain a novel viewpoint on interacting quantum field theories and perturbative

gravity which arise in the limit where strings shrink to point particles. In many instances, the

hidden simplicity of and relations between gauge-theory and gravity amplitudes are invisible to

conventional methods (Lagrangians or Feynman diagrams) but follow naturally from string theory,

see for instance [8–11].
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In this work, we review recent encounters of string amplitudes with modern topics in number

theory. In the “tree-level” approximation, open-string amplitudes depend on the strings’ funda-

mental length scale through iterated integrals in the unit interval and therefore involve multiple

zeta values (MZVs). As we will see, the rich mathematical patterns of the MZVs’ appearance

can be understood from the Drinfeld associator [12,13] and the Hopf algebra structure of motivic

MZVs [14]. We also report on tree-level amplitudes of the closed-string [14, 15] as well as recent

results [16] on the leading quantum corrections, “one-loop amplitudes”. In the open-string sec-

tor, the latter are governed by iterated integrals on a genus-one surface and thus involve elliptic

analogues of MZVs as studied by Enriquez [17,18].

1.1 The disk amplitude

Tree-level scattering amplitudes of open superstring states are given by iterated integrals along the

boundary of a disk. The integrand is a correlation function of vertex operators which insert the

degrees of freedom of the external states onto a worldsheet of disk topology. Using the pure spinor

formulation of the superstring [19], the correlator has been evaluated recently for any number of

massless external legs [20],

A(1, 2, . . . , n;α′) =
∑

σ∈Sn−3

F σ(sij)AYM(1, σ(2, 3, . . . , n−2), n−1, n) , (1.1)

where the labels 1, 2, . . . , n on the left hand side refer to the polarizations and momenta of the exter-

nal gauge bosons or their supersymmetry partners. Their ordering specifies a cyclic arrangement of

punctures along the disk boundary, and the additional argument α′ denotes the inverse string ten-

sion or the squared string length scale. On the right hand side, AYM(1, σ(2, 3, . . . , n−2), n−1, n)

are partial tree amplitudes in the super Yang-Mills theory obtained in the point particle limit

α′ → 0 [8]. They encode sums of Feynman diagrams obtained in degeneration limits of the disk

worldsheet (see figure 1) and also depend on the external states in a cyclic ordering which is

governed by (n− 3)! permutations σ ∈ Sn−3.

The objects of central interest to this work are the integrals F σ(sij) in (1.1), we will report on

the results of [13,14] on their expansion in α′. In a parametrization of the disk boundary through
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α′→0−→ + . . .

Figure 1: The disk worldsheet describing open-string scattering at tree level degenerates to Feyn-
man diagrams in the point-particle or field-theory limit α′ → 0, where the ellipsis refers to further
representatives of Feynman diagrams.

real coordinates zj ∈ R with zij ≡ zi − zj [20],

F σ(sij) ≡ (−1)n−3

∫
0≤z2≤z3≤...≤zn−2≤1

dz2 dz3 . . . dzn−2

(
n−1∏
i<j

|zij|sij
)
σ
{ n−2∏
k=2

k−1∑
m=1

smk
zmk

}
. (1.2)

We have fixed the SL(2) symmetry on the disk by choosing z1 = 0, zn−1 = 1 and zn = ∞. The

permutation σ ∈ Sn−3 is understood to act on the labels 2, 3, . . . , n− 2 in the curly bracket while

leaving σ(1) = 1. The integrals in (1.2) carry the entire α′-dependence of the disk amplitude

through dimensionless combinations

sij ≡ α′(ki + kj)
2 (1.3)

of the external momenta ki which are vectors of the D-dimensional Lorentz group. Momentum

conservation
∑n

i=1 ki = 0 and the on-shell condition (ki)
2 = 0 for massless particles leave n

2
(n− 3)

independent Mandelstam variables sij. As we will demonstrate, the integrals in (1.2) reduce as

follows in the field-theory limit α′ → 0,

lim
α′→0

F σ(sij) =

 1 : σ(2, 3, . . . , n− 2) = 2, 3, . . . , n− 2

0 : otherwise
, (1.4)

i.e. their Taylor expansion w.r.t. sij in (1.3) encodes the string-corrections to super Yang-Mills

theory. The expansion w.r.t. sij and thereby α′ turns out to exhibit uniform transcendentality1:

The w’th order in α′ is accompanied by MZVs of transcendental weight w.

In the following sections, we will describe two organizing principles underlying the α′-expansion

1The terminology here and in later places relies on the commonly trusted conjectures on the transcendentality
of MZVs.
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of the F σ(sij). More specifically,

• A matrix representation of the Drinfeld associator generates the Taylor expansion in sij in a

recursive manner w.r.t. the multiplicity n [13], see section 2.

• Motivic MZVs and their Hopf algebra structure allow to extract the complete information

on F σ(sij) from its coefficients along with primitive MZVs ζw [14], see section 3.

In section 4, we conclude with a brief discussion of generalizations to closed strings or quantum

corrections and raise open questions.

2 The α′-expansion from the Drinfeld associator

In this section, we review the recursion in [13] to obtain α′-expansion of the integrals in (1.2) from

the Drinfeld associator [21, 22]. This is achieved by establishing a Knizhnik-Zamolodchikov (KZ)

equation for a deformation of the integrals in question through an auxiliary worldsheet puncture

z0. Certain boundary values of the deformed integrals as z0 → 0 and z0 → 1 are found to yield the

original F σ(sij) at multiplicity n− 1 and n, respectively. Recalling that the superscript σ denotes

permutations of the legs 2, 3, . . . , n− 2, one can write the resulting recursion as [13]

F σi =

(n−3)!∑
j=1

[
Φ(e0, e1)

]
ij
F σj
∣∣
kn−1=0

, (2.1)

where the kinematic regime kn−1 = 0 on the right hand side gives rise to (n− 1)-point integrals,

F σ(23...n−2)
∣∣
kn−1=0

=

 F σ(23...n−3) if σ(n−2) = n−2

0 otherwise
. (2.2)

The expressions for and derivation of the matrices e0 and e1 will be discussed in the subsequent.

2.1 Background on MZVs and the Drinfeld associator

Before setting up the construction of the integrals F σ(sij), we shall review the convention for MZVs

and selected properties of the Drinfeld associator. MZVs of transcendental weight w ∈ N0 can be

defined through iterated integrals labelled by a word in the two-letter alphabet vj ∈ {0, 1},

ζ{v1v2...vw} ≡ (−1)
∑w
j=1 vj

∫
0≤z1≤z2≤...≤zw≤1

dz1

z1 − v1

dz2

z2 − v2

. . .
dzw

zw − vw
, (2.3)
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where v1 = 1 and vw = 0 ensure convergence. Divergent integrals arising for v1 = 0 or vw = 1 can

be addressed using the shuffle regularization prescription [23],

ζ{0} = ζ{1} = 0 , ζ{v} · ζ{u} = ζ{v�u} , (2.4)

with the standard shuffle product � on words v = v1v2 . . . and u ≡ u1u2 . . . . The representation

of MZVs as nested sums can be recovered from the above integrals via

ζn1,n2,...,nr ≡
∞∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nrr = ζ{
10 . . . 0︸ ︷︷ ︸

n1

10 . . . 0︸ ︷︷ ︸
n2

······ 10 . . . 0︸ ︷︷ ︸
nr

} , (2.5)

such that for example ζ{10} = −ζ{01} = ζ2.

The Drinfeld associator governs the universal monodromy of the KZ equation2 with z0 ∈
C\{0, 1} and Lie-algebra generators e0, e1:

dF̂(z0)

dz0

=

(
e0

z0

+
e1

1− z0

)
F̂(z0) . (2.6)

The solution F̂(z0) of the KZ equation lives in the vector space the representation of e0 and e1 acts

upon. This general setup will later on be specialized to (n − 2)!-component realizations of F̂(z0)

closely related to the disk integrals F σ.

Given the singularities of the differential operator in (2.6) as z0 → 0 and z0 → 1, non-analytic

behaviour as ze00 and (1− z0)−e1 has to be compensated when considering boundary values,

C0 ≡ lim
z0→0

z−e00 F̂(z0) , C1 ≡ lim
z0→1

(1− z0)e1F̂(z0) . (2.7)

As a defining property of the Drinfeld associator, it relates the regularized boundary values in (2.7)

via [21, 22]

C1 = Φ(e0, e1)C0 . (2.8)

At the same time, the Drinfeld associator in (2.8) can be written as a generating series of MZVs.

2The sign convention for e1 varies in the literature.
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In terms of their integral representation (2.3), we have [24]

Φ(e0, e1) =
∑

v∈{0,1}×
ev1ev2 . . . evj . . . ζ...vj ...v2v1 (2.9)

= 1 + ζ2[e0, e1] + ζ3[e0 − e1, [e0, e1]] + . . . .

Hence, the Drinfeld associator plays a two-fold rôle as a generating series for MZVs in (2.9) and

the universal monodromy of the KZ equation as in (2.8). Like this, it will be shown to hold the

key to the recursion in (2.1) for disk integrals.

2.2 Deforming the disk integrals

In order to relate the disk integrals (1.2) to the Drinfeld associator, we will follow the lines of [25]

and study a deformation that satisfies the KZ equation (2.6). In addition to an additional disk

puncture z0 ∈ [0, 1], auxiliary Mandelstam invariants s02, . . . , s0,n−2 ∈ R as well as an integer

parameter ν = 1, 2, . . . , n− 2 are introduced in

F̂ σ
ν (sij, s0k, z0) ≡ (−1)n−3

∫
0≤z2≤z3≤...≤zn−2≤z0

dz2 dz3 . . . dzn−2

(
n−1∏
i<j

|zij|sij
)

(2.10)

×

(
n−2∏
k=2

|z0k|s0k
)
σ
{ ν∏
l=2

l−1∑
m=1

sml
zml

n−2∏
p=ν+1

n−1∑
q=p+1

spq
zpq

}
.

The integration domain for z2, . . . , zn−2 reduces to the original one in (1.2) if z0 → 1 and sends

all integration variables to zero if z0 → 0. As a consequence of the extra Mandelstam invariants

s0k, different values of ν = 1, 2, . . . , n − 2 yield inequivalent integrals3 such that the (n − 3)!

permutations σ ∈ Sn−3 together with the range of ν yield a total of (n − 2)! functions in (2.10).

It will be convenient to combine these objects to an (n− 2)!-component vector whose entries are

ordered as F̂ = (F̂n−2, F̂n−3, . . . , F̂1).

The (n − 2)! components in (2.10) exceeding the number of (n − 3)! desired integrals in (1.2)

3In the original disk integrals (1.2), rearranging the curly bracket of the integrand as

n−2∏
l=2

l−1∑
m=1

sml
zml
→

ν∏
l=2

l−1∑
m=1

sml
zml

n−2∏
p=ν+1

n−1∑
q=p+1

spq
zpq

amounts to adding total derivatives w.r.t. z2, . . . , zn−2 which vanish in presence of the Koba-Nielsen factor∏n−1
i<j |zij |sij . Tentative boundary contributions at zj = zj±1 are manifestly suppressed by |zj − zj±1|sj,j±1 for

positive real part of sj,j±1 which propagates to generic complex values by analytic continuation.
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are required to ensure that the deformed vector F̂ satisfies the KZ equation (2.6). Clearly, the

variables e0, e1 therein become (n− 2)!× (n− 2)! matrices, and it will be illustrated by the later

examples that their entries are linear in the Mandelstam variables sij as well as their auxiliary

counterparts s0k. Hence, the regularized boundary values (2.7) of F̂ will be related as in (2.8) by a

(n− 2)!× (n− 2)! matrix representation of the Drinfeld associator. As is explained in more detail

in [13], the components in (2.10) give rise to regularized boundary values

C0

∣∣
s0k=0

= (F σ
∣∣
kn−1=0

,0(n−3)(n−3)!)
t , C1

∣∣
s0k=0

= (F σ, . . .)t (2.11)

upon setting the auxiliary Mandelstam invariants s0k to zero. The (n − 3)(n − 3)! components

of C1 in the ellipsis do not need to be evaluated. In (2.11) and many subsequent equations, the

dependence on sij is suppressed. With the regularized boundary values in (2.11), the relation (2.8)

becomes  F σ

...

 =
[
Φ(e0, e1)

]
(n−2)!×(n−2)!

 F σ
∣∣
kn−1=0

0(n−3)(n−3)!

 (2.12)

upon taking s0k → 0, and the zeros in the vector on the right hand reduces the recursion (2.12)

to the form given in (2.1). From the linearity of e0 and e1 in sij (and therefore α′), two central

properties of F σ(sij) stated above can be easily verified:

• The α′ → 0 limit of the disk integrals in (1.4) follows from the fact that the only contribution

of the associator to this order is Φ(e0, e1) = 1 +O(α′).

• Uniform transcendentality follows from the expansion (2.9) of the associator where MZVs of

weight w are accompanied by w powers of e0, e1 and, by their linearity in sij, w powers of α′.

2.3 Four- and five-point examples

In this subsection, we firstly illustrate the recursion (2.1) by examples with n = 4, 5 external states

and secondly explain the mechanisms leading to a KZ equation for the functions in (2.10) as well

as the explicit form of e0, e1 at various multiplicities. As a convenient shorthand, we introduce

Xij ≡
sij
zij

. (2.13)
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n = 4 points: Here, the auxiliary vector made of (2.10) has two components F̂
(2)
2

F̂
(2)
1

 =

∫ z0

0

dz2 |z12|s12|z23|s23zs0202

 X21

X32

 , (2.14)

where the derivative w.r.t. z0 introduces a factor of s02
z02

into the integrand4. Given the SL(2)-fixing

(z1, z3, z4) = (0, 1,∞), the extra dependence on z0 can be rearranged into factors of 1
z01

= 1
z0

and

1
z03

= 1
z0−1

via partial fraction (z12z02)−1 = (z12z01)−1 − (z01z02)−1 and integration by parts:

0 = −
∫ z0

0

dz2
d

dz2

|z12|s12|z23|s23zs0202 =

∫ z0

0

dz2 |z12|s12|z23|s23zs0202

(
s02

z02

+
s12

z12

− s23

z23

)
. (2.15)

These manipulations lead to

d

dz0

F̂
(2)
2 =

1

z0

[
(s12 + s02)F̂

(2)
2 − s12F̂

(2)
1

]
(2.16)

d

dz0

F̂
(2)
1 =

1

1− z0

[
s23F̂

(2)
2 − (s23 + s02)F̂

(2)
1

]
, (2.17)

which allow to read off the following 2× 2 matrix representations for e0, e1 upon setting s02 → 0:

e0 =

 s12 −s12

0 0

 , e1 =

 0 0

s23 −s23

 . (2.18)

Given the regularized boundary values (2.11), the main result (2.1) specializes to F (2)

...

 =
[
Φ(e0, e1)

]
2×2

 1

0

 . (2.19)

Note that the explicit form of the matrices (2.18) renders any nested commutator adk0adl1[e0, e1]

with k, l ∈ N0 and adix ≡ [ei, x] proportional to the nilpotent matrix
(

1 −1
1 −1

)
. As a consequence,

the MZVs in
[
Φ(e0, e1)

]
2×2

can be expressed in terms of primitives ζw and are consistent with

F (2) =
Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
= exp

( ∞∑
n=2

ζn
n

(−1)n
[
sn12 + sn23 − (s12 + s23)n

])
, (2.20)

4The derivative w.r.t. z0 directly acts at the level of the integrand since the boundary contribution from the
z0-dependence in the upper limit is suppressed as limzn−2→z0(z0 − zn−2)s0,n−2 = 0. As before, the limit is obvious
if s0,n−2 has a positive real part and otherwise follows from analytic continuation.
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see [12] for a connection with a quotient of the associator. While the expression in (2.20) is more

suitable to manifest the MZV-content of the four-point amplitude as compared to (2.19), the

construction of the F σ from the associator becomes significantly more rewarding at n ≥ 5.

n = 5 points: At five-points, the auxiliary vector built from (2.10) has six components,

F̂
(23)
3

F̂
(32)
3

F̂
(23)
2

F̂
(32)
2

F̂
(23)
1

F̂
(32)
1


=

∫ z0

0

dz3

∫ z3

0

dz2

4∏
i<j

|zij|sij zs0202 z
s03
03



X12(X13+X23)

X13(X12+X32)

X12X34

X13X24

(X23+X24)X34

(X32+X34)X24


. (2.21)

Following the methods from the n = 4 case, the z0-derivatives can be cast into the form (2.6) using

a sequence of partial fraction relations and integrations by parts. After setting s0k → 0, we can

read off the resulting 6× 6 matrix representation (with the shorthand sijk ≡ sij + sik + sjk):

e0 =



s123 0 −s13 − s23 −s12 −s12 s12

0 s123 −s13 −s12 − s23 s13 −s13

0 0 s12 0 −s12 0

0 0 0 s13 0 −s13

0 0 0 0 0 0

0 0 0 0 0 0


(2.22)

e1 =



0 0 0 0 0 0

0 0 0 0 0 0

s34 0 −s34 0 0 0

0 s24 0 −s24 0 0

s34 −s34 s23 + s24 s34 −s234 0

−s24 s24 s24 s23 + s34 0 −s234


. (2.23)
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The regularized boundary values in (2.11) then imply the following associator construction for the

functions F σ in the five-point amplitude:
F (23)

F (32)

...

 =
[
Φ(e0, e1)

]
6×6


F (2)

0

04

 (2.24)

Note that the five-point α′-expansion in (2.24) can also be obtained from the representation of

F (23) and F (32) in terms of the hypergeometric functions 3F2 [26–30].

2.4 Higher multiplicity

The techniques to establish the KZ equation of F̂(z0) and to determine the matrices e0, e1 are

universal to any value of n. Expressions for e0, e1 are straightforward to compute and additionally

take a suggestive form; the resulting instances up to n = 9 can be downloaded from the website [31].

While the results for n = 6, 7 reproduce the α′-expansions in [27,28,32] as well as [33] to the orders

tested, the associator-based method firstly makes high multiplicities n > 7 accessible. Even though

the setup in [33] based on polylogarithms does not impose any limitations on n, its growing manual

effort (e.g. in the treatment of poles) suggests to preferably rely on the Drinfeld associator at large

multiplicities.

3 Motivic MZVs and the α′-expansion

The main result (2.1) of the previous section together with the expressions for e0 and e1 in (2.18),

(2.22), (2.23) as well as [31] make the sij-dependence of the disk integrals fully explicit. The MZVs

originate from the Drinfeld associator as in (2.9) and carry redundancies in view of the relations

over Q among the iterated integrals ζ{v} with v ∈ {0, 1}×. In this section, we investigate the

structure of the α′-expansion once the MZVs are reduced to their conjectural bases over Q. In a

conjectural model for MZVs using non-commutative generators f3, f5, f7, . . . and a commutative

variable f2 [34], the end result for F σ is captured by the neat expression [14](
∞∑
k=0

fk2P2k

)
∞∑
n=0

(
f3M3 + f5M5 + f7M7 + . . .

)n
, (3.1)
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where Mw and Pw are (n − 3)! × (n − 3)! matrices to be specified below. Most importantly, the

coefficients P2k and M2i+1 of the primitives fk2 and f2i+1 completely determine the α′-dependence

along with compositions such as f2f2i+1 and f2i+1f2j+1.

3.1 Matrix-valued approach to disk amplitudes

In order to see the aforementioned relations between the coefficients of various basis MZVs over

Q, it is convenient to promote the disk integrals in (1.2) to a (n− 3)!× (n− 3)! matrix

Fτ
σ(sij) ≡ (−1)n−3

∫
0≤zτ(2)≤zτ(3)≤...≤zτ(n−2)≤1

dz2 dz3 . . . dzn−2

(
n−1∏
i<j

|zij|sij
)
σ
{ n−2∏
k=2

k−1∑
m=1

smk
zmk

}
. (3.2)

The additional index τ refers to permutations in Sn−3 of the integration variables 2, 3, . . . , n − 2

and distinguishes different integration domains 0 ≤ zτ(2) ≤ zτ(3) ≤ . . . ≤ zτ(n−2) ≤ 1. The matrix

of disk integrals in (3.2) allows to simultaneously address an (n− 3)! family of different tree-level

subamplitudes,

A(1, τ(2, 3, . . . , n− 2), n− 1, n;α′) =
∑

σ∈Sn−3

Fτ
σ(sij)AYM(1, σ(2, 3, . . . , n−2), n−1, n) . (3.3)

The furnish a basis of arbitrary string subamplitudes A(π(1, 2, . . . , n);α′) with π ∈ Sn [10, 11] in

the same way as the AYM(. . .) on the right hand side are a basis of field-theory subamplitudes [35].

In principle, it suffices to know a single line of (3.2) with fixed τ since the remaining entries of

the matrix can be generated by relabeling of the sij and corresponding changes in σ and τ . The

description of disk integrals through a square matrix F (sij) as in (3.2) is useful in view of matrix

multiplication. Let Pw and Mw denote (n − 3)! × (n − 3)! matrices whose entries are degree w

polynomials in Mandelstam invariants with rational coefficients, then a reduction of MZVs to their

conjectural Q-bases at weight w ≤ 8 yields

F (sij) = 1(n−3)!×(n−3)! + ζ2P2 + ζ3M3 + ζ2
2P4 + ζ2ζ3P2M3 + ζ5M5

+ ζ3
2P6 +

1

2
ζ2

3M3M3 + ζ7M7 + ζ2ζ5P2M5 + ζ2
2ζ3P4M3 (3.4)

+ ζ4
2P8 + ζ3ζ5M5M3 +

1

2
ζ2ζ

2
3P2M3M3 +

1

5
ζ3,5[M5,M3] +O(α′9) .

Remarkably, the matrix product P2M3 along with the weight-five product ζ2ζ3 is determined by the

coefficients P2 and M3 of ζ2 and ζ3, respectively. The different parental letters Pw,Mw for matrices

12



of even and odd order w in α′ goes back to the different nature of the associated primitives: At

even weight, ζ2n ∈ Qπ2n can be reduced to powers of ζ2 = π2

6
with rational prefactors while no

relations among ζ2n+1 of different odd weight5 and powers of π are known or expected. Also, only

a single left-multiplicative matrix factor of Pw is seen in each term of the expansion in (3.4) and

its generalization to higher weight.

The depth-two MZVs ζ3,5 in the last line of in (3.4) is accompanied by a matrix commutator

[M5,M3] = M5M3 − M3M5, but its rational prefactor 1
5

is less intuitive than the lower-weight

counterparts. The even more dramatic proliferation of rational prefactors at weight eleven,

F (sij)
∣∣
(α′)11

= ζ11M11 + ζ4
2ζ3P8M3 +

1

2
ζ2

3ζ5M5M
2
3 +

1

6
ζ2ζ

3
3P2M

3
3 + ζ2ζ9P2M9 + ζ2

2ζ7P4M7 (3.5)

+ ζ3
2ζ5P6M5 +

1

5
ζ3,5ζ3[M5,M3]M3 +

(
9ζ2ζ9 +

6

25
ζ2

2ζ7 −
4

35
ζ3

2ζ5 +
1

5
ζ3,3,5

)
[M3, [M5,M3]] ,

calls for a systematic understanding of how the matrix commutators enter at generic weight, see [14]

for the analogous expressions at weight w ≤ 16. The required mathematical framework will be

introduced in the following subsection.

3.2 Motivic MZVs

The basis MZVs over Q in the α′-expansion (3.4) and (3.5) have been chosen as in [38], following

the guiding principle of preferring short and simple representatives. An alternative handle on the

choice of basis can be obtained by switching to a conjecturally equivalent language for MZVs: a

Hopf algebra comodule, which is composed from words

f2i1+1 . . . f2ir+1 f
k
2 , with r, k ≥ 0 and i1, . . . , ir ≥ 1 (3.6)

and graded by their weight w = 2(i1 + . . . + ir) + r + 2k. The non-commutative generators f2i+1

of odd weight by themselves furnish a Hopf algebra, and the additional commutative variable f2

extend it to a Hopf algebra comodule [34]. At each weight, the enumeration of all non-commutative

words of the form in (3.6) yields the same basis dimension over Q as conjectured for MZVs of the

same weight [39].

The mapping of MZVs to non-commutative words in (3.6) is slightly involved and relies on

(commonly trusted) conjectures such as the exclusion of additional algebraic relations between

5Also, none of the odd ζ-values has been proven to be transcendental so far: the only known facts are the
irrationality of ζ3 as well as the existence of an infinite number of odd irrational ζ’s [36, 37].
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MZVs beyond the known double-shuffle identities. In order to circumvent the currently intractable

challenges to prove the outstanding conjectures, one lifts MZVs ζ to so-called motivic MZVs ζm

whose more elaborate definition [34, 40–42] will not be reviewed in the subsequent. As a key

property of motivic MZVs, they obey the same shuffle and stuffle product formulæ as the MZVs,

e.g. (2.4) carries over to ζm{v}ζ
m
{u} = ζm{v�u}. The transition from MZVs to their motivic counterparts,

ζn1,...,nr → ζmn1,...,nr
, has the advantage that many of the desirable, but currently unproven facts

about MZVs are in fact proven for motivic MZVs. In particular, the commutative algebra of motivic

MZVs is graded by definition, and the motivic coaction, first written down by Goncharov [40] and

further studied by Brown [34,41,43], is well-defined.

In the framework of motivic MZVs, one can construct an isomorphism φ of graded algebra

comodules which map any ζmn1,...,nr
to non-commutative words of the form (3.6), see [43] for a

thorough description. Once the normalization is fixed as

φ(ζmw ) = fw , f2k ≡
ζ2k

(ζ2)k
fk2 , (3.7)

the map φ can be largely determined by demanding compatibility with the algebraic structures:

φ(ζmn1,...,nr
ζmm1,...,mr

) = φ(ζmn1,...,nr
)� φ(ζmm1,...,mr

) (3.8)

∆φ(ζmn1,...,nr
) = φ(∆ζmn1,...,nr

) . (3.9)

While the motivic coaction on the right hand side of (3.9) [40] can become combinatorically

involved at higher weights, the coaction on the non-commutative words from (3.6) is given by

simple deconcatenation

∆(fk2 fi1fi2 . . . fir) =
r∑
j=0

(fk2 fi1fi2 . . . fij)⊗ (fij+1
. . . fir) , ij ∈ 2N + 1 . (3.10)

In combination with (3.9), this largely determines the φ-image of higher-depth MZVs such as

φ(ζm3,5) = −5f3f5 , φ(ζm3,7) = −14f3f7 − 6f5f5 (3.11)

φ(ζm3,3,5) = −5 f3f3f5 +
4

7
f5f

3
2 −

6

5
f7f

2
2 − 45 f9f2 , (3.12)

see [43] for an efficient algorithm based on an infinitesimal version of the coaction.

However, the insensitivity of the coaction constraint (3.9) to primitives introduces an ambiguity

of adding rational multiples of f 4
2 , f

5
2 and f11 to the right hand sides of (3.11) and (3.12). The
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absence of such primitives in the above expressions reflects a specific choice of the isomorphism

φ. It is convenient to tailor the φ-map to the choice of Q-basis for motivic MZVs at weight w

by suppressing fw in the φ-images of all basis elements except for (3.7). The φ-images at weights

w ≤ 16 displayed in [14] rely on reference bases of motivic MZVs over Q as in [38].

3.3 Cleaning up the α′-expansion

The language of non-commutative words as in (3.6) turns out to reveal the pattern of MZVs in the

α′-expansions in (3.4) and (3.5). Upon passing to a motivic version of the matrix F (sij) in (3.2),

Fm(sij) ≡ F (sij)
∣∣
ζn1,...,nr→ζmn1,...,nr

, (3.13)

the above expansions (with weights w = 9, 10 restored) translate into the following φ-image under

(3.11) and (3.12):

φ(Fm(sij)) = (1(n−3)!×(n−3)! + f2P2 + f 2
2P4 + f 3

2P6 + f 4
2P8 + f 5

2P10)

× (1(n−3)!×(n−3)! + f3M3 + f5M5 + f3f3M
3
3 + f7M7 + f3f5M3M5 + f5f3M5M3

+ f9M9 + f3f3f3M
3
3 + f5f5M

2
5 + f3f7M3M7 + f7f3M7M3 (3.14)

+ f11M11 + f3f3f5M3M3M5 + f3f5f3M3M5M3 + f5f3f3M5M3M3) +O(α′12) .

The coefficients P2k of the commutative variables fk2 build up a left-multiplicative matrix factor and

can be cleanly disentangled from the odd-weight contributions involving f2i+1 and M2i+1. Within

the odd-weight sector, the democratic appearance of any non-commutative word in f2i+1M2i+1

with unit coefficient motivates the following generalization to arbitrary weight [14]:

φ(Fm(sij)) =

(
∞∑
k=0

fk2P2k

)
∞∑
p=0

∑
i1,i2,...,ip
∈2N+1

fi1fi2 . . . fipMi1Mi2 . . .Mip . (3.15)

This all-order expression remains a conjecture beyond weights ≤ 21, 9, 7 at multiplicity n = 5, 6, 7

where explicit checks have been performed in [33]. It is tempting to rewrite the right-multiplicative

factor made of f2i+1M2i+1 as a formal geometric series,

∞∑
p=0

∑
i1,i2,...,ip
∈2N+1

fi1fi2 . . . fipMi1Mi2 . . .Mip =
1

1− (f3M3 + f5M5 + f7M7 + . . .)
, (3.16)
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whose equivalence to (3.15) and (3.1) relies on the expansion (1 − x)−1 =
∑∞

n=0 x
n under certain

assumptions on the infinite series x ≡ f3M3 + f5M5 + f7M7 + . . . . Given the disappearance of

the exotic rational prefactors 6
25

or − 4
35

in (3.5), the striking simplicity of (3.15) is manifested by

the language based on words in f2, f2i+1 where the coaction (3.10) takes a more intuitive form as

compared to ∆ζmn1,...,nr
. Hence, the understanding of the pattern in the α′-expansion can ultimately

be attributed to the Hopf algebra structure of motivic MZVs.

Even though the coefficients of fn1+n2+...+np in a given φ(ζmn1,n2,...,np
) and thereby Pw,Mw depend

on the choice of basis MZVs, the form of the end result (3.15) is universal. Explicit expressions for

the matrices Pw,Mw at various weights w and multiplicities n are available for download at [31],

they are associated with the MZV bases of [38]. At multiplicity n = 4, they become scalars such

that the vanishing of any commutator [Mi,Mj] ensures the absence of depth ≥ 2 MZVs in the

four-point amplitude. The closed-form expressions

M2i+1

∣∣
n=4

= − 1

2i+ 1

[
s2i+1

12 + s2i+1
23 + s2i+1

13

]
, P2k

∣∣
n=4

=
ζ2k

2k(ζ2)k
[
s2k

12 + s2k
23 − s2k

13

]
(3.17)

with s13 = −s12 − s23 can be inferred from the representation of F (2) in (2.20).

We emphasize that the complete information on Fm(sij) in contained in (3.15) since φ can be

inverted to recover motivic MZVs from fw. More importantly, only one matrix Pw,Mw along with

fw needs to be specified at each weight: The matrix-multiplicative pattern in (3.15) determines

the coefficients of any other word in f2 and f2i+1 of the same weight from matrices seen at lower

weight. Given that the conjectural number [39] of linearly independent weight-w MZVs over Q

grows with the order of
(

4
3

)w
, this amounts to an enormous compression of information.

As firstly pointed out in [12], the form of the α′-expansion in (3.15) implies a simple expression

for the motivic coaction,

∆Fm(sij) = Fm(sij)⊗ Fm(sij)
∣∣
ζm2 =0

, (3.18)

where matrix multiplication is understood between the two sides of the tensor product. This

resembles the coaction of the motivic Drinfeld associator Φm(e0, e1) ≡ Φ(e0, e1)
∣∣
ζn1,...,nr→ζmn1,...,nr

[12]

∆Φm(e0, e1) = Φm(e0, e1)
/
⊗ Φm(e0, e1)

∣∣
ζm2 =0

, (3.19)

where the operation / on top of the tensor product denotes the Ihara action among the words

in e0 and e1 on the two sides. The expansion of the Drinfeld associator in a conjectural basis of

MZVs over Q takes a form analogous to (3.15) where matrix multiplication among Pw and Mw is
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replaced by Ihara products among elementary words [12].

4 Further directions and open questions

In the previous sections, we have described the mathematical structure of tree-level amplitudes

(1.1) among any number of massless open-superstring states. The string-corrections to the corre-

sponding gauge-theory amplitudes are governed by the disk integrals in (1.2) whose α′-expansion

exhibits elegant patterns of MZVs. As elaborated in section 2, the Drinfeld associator generates

the dependence on dimensionless kinematic invariants α′ki · kj in a recursive fashion, see in partic-

ular (2.1). Once the resulting MZVs are cast into their (conjectural) basis over Q, their coefficients

are related by matrix multiplication as displayed in (3.1). The systematics discussed in section 3

only become fully apparent if the MZVs are translated into a language based on non-commutative

words. This dictionary is guided by the Hopf algebra structure, most notably by the coaction, and

its mathematical validity relies on the use of motivic MZVs.

A couple of natural follow-up questions have already been addressed in the literature, so we

shall conclude with a sketch of the subsequent developments before pointing out open problems.

4.1 The closed string at genus zero and single-valued MZVs

Tree-level scattering of closed strings is described by worldsheets of sphere topology. The in-

tegrations over vertex operator positions can be deformed in a way described in [9] such that

closed-string tree amplitudes are composed from squares of open-string subamplitudes. This so-

called “KLT-formula” [9] relies on the fact that the closed-string spectrum is contained in the

tensor product of open-string excitations. At the massless level, for instance, closed-string ex-

citations furnish a supersymmetry multiplet containing the graviton which arises from doubling

gauge-boson supermultiplets in the open-string sector.

Once the (n − 3)!-element basis of open-string subamplitudes [10, 11] is organized as in (3.3),

the n-point closed-string tree amplitude Mn takes the form

Mn(α′) =
∑

τ,σ,ρ,π∈Sn−3

ÃYM(1, τ, n− 1, n)Fρ
τ (sij)Sρ,πα′ (sij)Fπ

σ(sij)AYM(1, σ, n− 1, n) , (4.1)

by the KLT-formula [9]. We use shorthands ÃYM(1, τ, n−1, n) ≡ ÃYM(1, τ(2, . . . , n−2), n−1, n)

and AYM(1, σ, n−1, n) ≡ AYM(1, σ(2, . . . , n−2), n−1, n) for the two independent gauge-theory fac-
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tors. The entries of the (n − 3)! × (n − 3)! matrix Sρ,πα′ (sij) are degree (n − 3)! polynomials in

sin(πsij), see [9, 44, 45] for more details and various representations. Their α′-expansion is based

on sin(πsij) = πsij
∑∞

n=1
(−1)n(πsij)

2n

(2n+1)!
and clearly interferes with the “even-zeta” sector represented

by f2 and P2k in the φ-image (3.15) of disk integrals. In supergravity amplitudes obtained from

the field-theory limit α′ → 0 of (4.1), the sine functions are reduced to their argument, leaving

behind

Sρ,π0 (sij) ≡ Sρ,πα′ (sij)
∣∣
sin(πsij)→πsij

. (4.2)

It turns out that the properties of the matrices P2k and Sρ,πα′ (sij) lead to the striking cancellation

of f2 in the φ-image of the closed-string amplitude (4.1) [14],(
∞∑
k=0

fk2P
t
2k

)
Sα′(sij)

(
∞∑
l=0

f l2P2l

)
= S0(sij) , (4.3)

which is tested to very high orders in α′ (21, 9 and 7 at n = 5, 6 and 7) but remains conjectural

beyond that. Another observational identity on the same footing concerns the matrices M2i+1 [14],

M t
2i+1S0(sij) = S0(sij)M2i+1 , (4.4)

which leads to additional cancellations among MZVs in the “odd-zeta” sector represented by the

f2i+1 in the open-string α′-expansion. Taking both of (4.3) and (4.4) into account, the motivic

version of the closed-string amplitude (4.1) defined in analogy to (3.13) can be simplified to [14]

φ(Mm
n (α′)) = ÃYMS0(sij)

∞∑
p=0

∑
i1,i2,...,ip
∈2N+1

Mi1Mi2 . . .Mip

p∑
j=0

fi1fi2 . . . fij � fip . . . fij+1
AYM . (4.5)

In all of (4.3) to (4.5), we have suppressed the Sn−3-“indices” present in (4.2) since the pattern of

their summation is clear from the relative ordering of the matrices and vectors.

As pointed out in [15], the arrangement of the odd-weight variables f2i+1 in (4.5) implements

the single-valued projection of MZVs [42,46],

sv : fi1fi2 . . . fip →
p∑
j=0

fi1fi2 . . . fij � fip . . . fij+1
. (4.6)

On these grounds, the α′-expansion in the representation (4.5) of the closed-string amplitude can
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be traced back to the single-valued version of the open-string amplitude (3.15) [15]

Mn(α′) = ÃYMS0(sij)sv[A(α′)] , (4.7)

where the (n − 3)! components of the vector A(α′) on the right hand side are spelt out in (3.3).

As detailed in [47], analogous statements hold for tree-level amplitudes of the heterotic string.

At the level of the associators, the single-valued projection (4.6) maps the Drinfeld associator

to the Deligne associator [42] which therefore captures the structure of the closed-string amplitude

[15]. It would be of central importance to find the closed-string counterpart of the recursive

associator construction in section 2 [13]. The emergence of the single-valued projection in (4.5)

and (4.7) could be rigorously proven from a direct derivation of the closed-string integrals from

the Deligne associator and would not rely on the empirical properties of the matrices Pw and Mw

in (4.3) and (4.4) which remain conjectural beyond certain orders.

4.2 The open string at genus one and elliptic MZVs

Apart from their implications for the closed string, the above results on open-string tree amplitudes

call for a generalization to their quantum corrections and thereby to Riemann surfaces of higher

genus. At the one-loop order of superstring perturbation theory, the worldsheet topologies relevant

to open-string scattering are cylinder and Moebius-strip diagrams. For appropriate choice of the

gauge group, these topologies conspire in a way to cancel infinities in the amplitudes considered

in this section, and infinity cancellation in more general situations additionally involves the Klein-

bottle topology [48]. Even though the cylindrical topology allows for insertions of vertex operators

on both boundaries (see [49,50] for the implications on anomaly cancellations), we shall now report

on recent studies [16] of the “planar” cylinder where the iterated integration is performed on a

single boundary.

4.2.1 Definition and properties of elliptic MZVs

The mathematical framework for worldsheet integrals in planar one-loop amplitudes of the open

superstring in known under the name of elliptic MZVs (eMZVs) [17, 18]. In the same way as

MZVs can be defined as the expansion coefficients of the Drinfeld associator, see (2.9), eMZVs are

defined [17] as the expansion coefficients of the elliptic Knizhnik-Zamolodchikov-Bernard (KZB)

associator [18] which governs the regularized monodromy of the universal elliptic KZB equation.
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This definition identifies eMZVs as iterated integrals on an elliptic curve C
Z+τZ with Im (τ) > 0, in

agreement with the approach via elliptic polylogarithms [51, 52]. The two homology cycles of the

elliptic curve parametrized through the paths from [0, 1] and [0, τ ] give rise to two types of eMZVs,

namely A-elliptic and B-elliptic MZVs. They descend from the two components (A(τ), B(τ)) of

the elliptic KZB associator describing the monodromies of the elliptic KZB equation w.r.t. the

paths [0, 1] and [0, τ ] and are related through the modular transformation τ → − 1
τ
.

We will focus on A-elliptic MZVs associated with the homology cycle [0, 1] ⊂ R and, given that

modular transformations restore the information on B-elliptic MZVs, refer to the former as eMZVs

for simplicity. In this context, the definition of MZVs in (2.3) via iterated integrals generalizes to

ω(n1, n2, . . . , nr; τ) ≡
∫

0≤z1≤z2≤...≤zr≤1

dz1 f
(n1)(z1, τ) dz2 f

(n2)(z2, τ) . . . dzr f
(nr)(zr, τ) (4.8)

with nj ∈ N0 for j = 1, 2, . . . , r. Instead of a two-letter alphabet {dz
z
, dz

1−z} of differential forms

seen at genus zero, eMZVs in (4.8) exhibit an infinity of doubly-periodic functions f (n) which can

be defined from their generating series

exp
(

2πiα
Im (z)

Im (τ)

)θ′(0, τ)θ(z + α, τ)

θ(z, τ)θ(α, τ)
=
∞∑
n=0

αn−1f (n)(z, τ) , (4.9)

for instance f (0)(z, τ) = 1 and f (1)(z, τ) = ∂
∂z

ln θ(z, τ) + 2πi Im (z)
Im (τ)

. The non-negative integers r

and w = n1 + n2 + . . .+ nr in (4.8) are referred to as the length and the weight of an eMZV. The

tick along with θ′(0, τ) in (4.9) denotes a derivative of the odd Jacobi θ function w.r.t. its first

argument z. Performing the integrals in the definition of eMZVs (4.8) yields a Fourier series in

q ≡ e2πiτ whose coefficients are MZVs along with integer powers of 2πi [17, 18].

By their definition (4.8) as iterated integrals, eMZVs satisfy shuffle relations

ω(n1, n2, . . . , nr; τ)ω(k1, k2, . . . , ks; τ) = ω
(
(n1, n2, . . . , nr)� (k1, k2, . . . , ks); τ

)
, (4.10)

and the parity properties f (n)(−z, τ) = (−1)nf (n)(z, τ) following from θ(−z, τ) = −θ(z, τ) and

(4.9) imply the reflection identities

ω(n1, n2, . . . , nr−1, nr; τ) = (−1)n1+n2+...+nrω(nr, nr−1, . . . , n2, n1; τ) . (4.11)

The combination of (4.10) and (4.11) is particularly constraining if the length r and the weight w
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are both even or odd, i.e. if r + w is even. In these cases, shuffle- and reflection identities can be

used to express any such eMZV in terms of products of lower-length eMZVs [53].

As a higher-genus analogue of partial-fraction relations 1
z(z−1)

= 1
z−1
− 1

z
among the genus-zero

forms in MZVs (2.3), the doubly-periodic functions f (n) obey Fay relations [16, 52]

f (n1)(z − x, τ)f (n2)(z, τ) = −(−1)n1f (n1+n2)(x, τ) +

n2∑
j=0

(
n1 − 1 + j

j

)
f (n2−j)(x, τ)f (n1+j)(z − x, τ)

+

n1∑
j=0

(
n2 − 1 + j

j

)
(−1)n1+jf (n1−j)(x, τ)f (n2+j)(z, τ) , (4.12)

which play a central rôle in deriving the subsequent α′-expansion of open-string one-loop ampli-

tudes. Together with the shuffle- and reflection identities (4.10) and (4.11), the Fay relations were

observed to generate all identities between eMZVs across a wide range of weights and lengths [53].

4.2.2 Elliptic MZVs in open-string amplitudes

The simplest non-vanishing one-loop amplitude of the open superstring involves four external

massless states [8]. In the aforementioned planar cylinder topology, the four-point amplitude

A1-loop(1, 2, 3, 4;α′) = s12s23AYM(1, 2, 3, 4)

∫ ∞
0

dt I1234(τ = it, sij) (4.13)

is governed by the following iterated integral,

I1234(τ, sij) ≡
∫ 1

0

dz4

∫ z4

0

dz3

∫ z3

0

dz2

4∏
i<j

esijG(zi−zj ,τ) , (4.14)

with z1 = 0 and Re (τ) = 0. The Mandelstam variables sij are defined in (1.3), and the bosonic

Green function G(zi − zj, τ) satisfies

∂

∂z
G(z, τ) = f (1)(z, τ) , G(z, τ) =

∫ z

0

dx f (1)(x, τ) , (4.15)

reflecting a regularization prescription for its zero mode that amounts to G(0, τ) → 0. Like this,

the integral in (4.14) can be related to eMZVs in (4.8) and expanded at fixed values of τ [16],

I1234(τ, sij) = ω(0, 0, 0; τ) − 2ω(0, 1, 0, 0; τ) (s12 + s23) + 2ω(0, 1, 1, 0, 0; τ)
(
s2

12 + s2
23

)
(4.16)

− 2ω(0, 1, 0,1, 0; τ) s12s23 + β5(τ) (s3
12+2s12s23(s12+s23)+s3

23) + β2,3(τ) s12s23(s12+s23) + O(α′4) ,
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with shorthands

β5(τ) =
4

3

[
ω(0, 0, 1, 0, 0, 2; τ) + ω(0, 1, 1, 0, 1, 0; τ)− ω(2, 0, 1, 0, 0, 0; τ)− ζ2ω(0, 1, 0, 0; τ)

]
β2,3(τ) =

ζ3

12
+

8ζ2

3
ω(0, 1, 0, 0; τ)− 5

18
ω(0, 3, 0, 0; τ) . (4.17)

At the third order in α′, the Fay identities (4.12) are crucial to express the iterated integrals over

three powers of the Green function (4.15) in terms of eMZVs. In an equivalent parametrization of

the cylinder boundary via z ∈ [0, τ ] instead of z ∈ [0, 1] as chosen in (4.14), the A-elliptic MZVs in

(4.16) are traded for their B-elliptic analogues. In contrast to A-elliptic MZVs, however, B-elliptic

MZVs are not periodic w.r.t. τ → τ+1 and do not have Fourier expansion such as

ω(0, 1, 0, 0; τ) =
ζ3

4π2
+

3

2π2

∞∑
m,n=1

1

m3
qmn (4.18)

for the A-elliptic MZV along with first α′-correction in (4.16). The Fourier expansion of the

cylinder integral admitted by the parametrization in (4.14) has been exploited to check [16] that

(4.16) reproduces the expected tadpole divergence [54]. The latter arises from the integration region

t→ i∞ in (4.13) and eventually cancels upon combination with the Moebius-strip diagram [48].

The polarization-dependence of the four-point amplitude (4.13) is represented by AYM(1, 2, 3, 4)

and thereby follows the organization principle (1.1) of tree-level n-point amplitudes in terms of an

(n − 3)!-basis of subamplitudes AYM(. . .) [10, 11, 35]. Similarly, the five-point one-loop amplitude

can be written as [16,55]

A1-loop(1, 2, 3, 4, 5;α′) =

∫ ∞
0

dt
∑
σ∈S2

I1σ(23)45(τ = it, sij)AYM(1, σ(2, 3), 4, 5) , (4.19)

see section 5.1 of [16] for more details on the integrals I12345 and I13245. At higher multiplicity

n ≥ 6, a gauge invariant sector of open-string one-loop amplitudes has been reduced to field-

theory subamplitudes as well [55]. However, the cancellation mechanism of the hexagon anomaly

[49, 50] requires additional kinematic structures in (n ≥ 6)-point amplitudes6, so it remains an

open problem to identify a suitable generalization of gauge-theory tree amplitudes to carry the

polarization dependence of the string amplitude.

6In the pure spinor framework [19], kinematic building blocks suitable to describe the anomaly sector have been
constructed in [56], see [57] for their appearance in the integrand of ten-dimensional field-theory amplitudes.
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4.2.3 Bases of elliptic MZVs over Q

Starting from the third subleading order in α′, the increasing length and complexity of the eMZV-

coefficients (4.17) calls for a systematic study of relations among eMZVs over Q and guiding

principles to select a suitable basis. This has been done in [53], also see [58] for a particularly

elaborate treatment of the length-two case. The number of independent eMZVs at given weight

and length is bounded by their differential equation

2πi
d

dτ
ω(n1, . . . , nr; τ) = n1Gn1+1(τ)ω(n2, . . . , nr; τ)− nrGnr+1(τ)ω(n1, . . . , nr−1; τ)

+
r∑
i=2

{
(−1)ni(ni−1 + ni)Gni−1+ni+1(τ)ω(n1, . . . , ni−2, 0, ni+1, . . . , nr; τ) (4.20)

−
ni−1+1∑
k=0

(ni−1 − k)

(
ni + k − 1

k

)
Gni−1−k+1(τ)ω(n1, . . . , ni−2, k + ni, ni+1, . . . , nr; τ)

+

ni+1∑
k=0

(ni − k)

(
ni−1 + k − 1

k

)
Gni−k+1(τ)ω(n1, . . . , ni−2, k + ni−1, ni+1, . . . , nr; τ)

}
with Gn(τ) denoting holomorphic Eisenstein series

Gn(τ) =


∑
k,m∈Z

(k,m)6=(0,0)

1

(k + τm)n
: n > 0

−1 : n = 0 .

(4.21)

As a consequence of (4.20), eMZVs can be expressed in terms of iterated integrals over Eisenstein

series, special cases of iterated Shimura integrals [59, 60]. In this picture, the iterated integration

is carried out over the argument τ , and the counting of (shuffle-independent) iterated Eisenstein

integrals sets an upper bound on the numbers of independent eMZVs.

On top of that, selection rules on the admissible Eisenstein integrals within eMZVs are encoded

in an algebra of derivations [61–64] which appear in the differential equation of the elliptic KZB

associator [17, 18], the generating series of eMZVs. In view of the central rôle of the Drinfeld

associator for tree-level amplitudes seen in section 2, the elliptic associator is expected to carry

essential information on one-loop open-string amplitudes including the α′-expansion (4.16).

A careful bookkeeping of eMZV relations within the above framework leads to the numbers

N(r, w) of indecomposable eMZVs7 of length r and weight w as shown in table 1 [53]. The data

7A set of indecomposable eMZVs of weight w and length r is a minimal set of eMZVs such that any other
eMZV of the same weight and length can be expressed as a linear combination of elements from this set as well as

23



in the table is compatible with the all-weight formulæ [53]

N(2, w) = 1 , N(3, w) =

⌈
1

6
w

⌉
, N(4, w) =

⌊
1

2
+

1

48
(w + 5)2

⌋
, (4.22)

which only hold for odd values of r + w and remain conjectural at r = 4.

r
w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 2 2 2 3 3 3 4 4
4 1 1 2 3 4 5 7 8 10 12 14 16
5 1 2 4 6 9 13 17 23 30 37 47
6 1 2 4 8 13 22 31 45 ? ? ? ?
7 1 4 8 16 29 48 ? ? ? ? ?

Table 1: Numbers N(r, w) of indecomposable eMZVs at length r and weight w.

Across a variety of lengths and weights, the decomposition of eMZVs in terms of such bases

can be downloaded from [65], this website also contains new relations in the derivation algebra.

4.3 The closed string at higher genus

Closed-string amplitudes at one-loop originate from a worldsheet of torus topology. Again, the

simplest non-vanishing superstring amplitude involves four massless external states [8], and the

study of its α′-expansion has a rich history as well as strong motivation from S-duality of type-IIB

superstring theory [66–68]. The α′-dependence stems from the worldsheet integral in the second

line of

M1-loop
4 (α′) = s2

12s
2
23AYM(1, 2, 3, 4)ÃYM(1, 2, 3, 4) (4.23)

×
∫
F

d2τ

(Im (τ))5

∫
(Tτ )3

d2z2 d2z3 d2z4

4∏
i<j

esijG(zi−zj ,τ) ,

analogous to (4.14) for the open string. The integration domain Tτ is specified by the complex

parametrization of the torus through a parallelogram with corners 0, 1, τ+1, τ . The Green function

in the exponent is defined in (4.15) and ensures modular invariance of the τ -integrand in (4.23)

with F denoting the fundamental domain.

products of eMZVs with strictly positive weights and eMZVs of lengths smaller than r or weight lower than w. The
coefficients are understood to comprise MZVs (including rational numbers) and integer powers of 2πi.
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The integration over τ leads to branch cuts in the dependence of the closed-string amplitude

(4.23) on the Mandelstam variables sij, as required by unitarity. A procedure to reconcile the

associated logarithmic dependence on sij with the naive Taylor expansion of the integral (4.23)

has been described in [69], see [70] for recent updates. The discontinuity structure of the open-

string one-loop amplitude follows the same principles and can be traced back to the integration

over t in (4.13).

The systematic α′-expansion of the integrals arising from Taylor expanding esijG(zi−zj ,τ) in

(4.23) has been initiated in [71] and pursued in [69, 70]. In a representation of Green functions

G(zi− zj, τ) as an edge between vertices i and j, intuitive graphical methods have been developed

in these references, see [72,73] for an extension to the five-point one-loop amplitude. Since the zero

mode of the Green function decouples from (4.23), only one-particle irreducible graphs contribute

to the α′-expansion. The simplest class of such graphs have the topology of an n-gon, see figure

2, and the integration over z2, z3, z4 in (4.23) gives rise to non-holomorphic Eisenstein series

En(τ) ≡
∑
k,m∈Z

(k,m)6=(0,0)

(Im (τ))n

πn |k +mτ |2n
, , n ∈ N , n ≥ 2 . (4.24)

Beyond that, an infinite family of modular invariants has been classified and investigated in [70]

(also see [74]), starting with the function

C2,1,1(τ) ≡
∑

k1,k2,m1,m2∈Z
(k1,m1),(k2,m2)6=(0,0)
(k1+k2,m1+m2)6=(0,0)

(Im (τ))4

π4 |k1 +m1τ |2 |k2 +m2τ |2 |k1 + k2 + (m1 +m2)τ |4
(4.25)

associated with the two-loop graph depicted in figure 2.

•

•

↔ E2 ,

•

•

• ↔ C2,1,1 .

• •

• •

↔ E4 ,

•

•

• ↔ E3 ,

Figure 2: Graphical organization of several sample contributions to (4.23): Vertices represent the
punctures zi, i = 1, 2, 3, 4 and edges between the vertices for zi and zi are associated with a factor
of G(zi−zj, τ). The integrals over z2, z3, z4 become elementary in a Fourier expansion of the Green
functions and yield the modular invariant lattice sums in (4.24) and (4.25).
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The central rôle played by Laplace eigenvalue equations in the discussions of [70] such as

(∆− n(n− 1))En(τ) = 0 , (∆− 2)C2,1,1(τ) = 9E4(τ)− E2
2(τ) (4.26)

with ∆ = 4(Im (τ))2 ∂
∂τ

∂
∂τ̄

bears similarities to the methods of [17, 18, 53] to compute eMZVs from

their differential equation in τ . It appears promising to investigate the parallels in the expansion

of the open-string integral (4.14) and its closed-string counterpart (4.23) and to exploit cross-

fertilizations of the methods used. Ultimately, it is tempting to hope for a one-loop generalization

of the single-valued projection which was seen in (4.5) and (4.7) to map tree-level amplitudes of

the open string to those of the closed string [15].

Certainly, the above structures deserve an investigation on higher-genus surfaces on the long

run. While higher-genus generalizations of eMZVs have not yet appeared in the literature, the

α′-expansion of the two-loop closed-string amplitude has been pushed beyond the leading order

[75, 76] and led to a connection with mathematics literature on the so-called Zhang-Kawazumi

invariant [77, 78]

ϕ(Ω) ≡
∫

Σ2

G(z, w,Ω)
∑
I,J,K,L
=1,2

[
2(Im Ω)−1

IL(Im Ω)−1
JK − (Im Ω)−1

IJ (Im Ω)−1
KL

]
ωI(z)ωJ(z)ωK(w)ωL(w) .

(4.27)

The arguments z, w of the genus-two Green function G(z, w,Ω) are integrated over a genus-two

Riemann surface with 2 × 2 period matrix Ω, and {ωI(z) : I = 1, 2} is a canonically normalized

basis of holomorphic one forms. The Zhang-Kawazumi invariant ϕ in (4.27) can be viewed as

the simplest two-loop analogue of the non-holomorphic Eisenstein series (4.24) and the modular

invariants for more involved graph topologies in the one-loop α′-expansion.

It is not unlikely that string-theory questions at higher order in loops and α′ encourage and

even inspire the development of new mathematical structures.
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