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Lecture 1
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Particles

@ The action for the relativistic massive particle is given by

S = —M/dn/—me'm

@ The momentum associated to X is easily computed to be

L X,
4 - M

CoXm XX

@ |t satisfies the constraint

Pm

PP+ M?> = 0

@ Therefore one can write down (1) in its Hamiltonian form as

s — /dT[Pme—Z(P2+M2)
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@ In this manner, a massless particle is described by
v m €2
S = dr|PpX™ — EP (5)

To study the physical spectrum described by (5), one needs to fix the
reparametrization symmetry. After gauge-fixing e = 1, one finds

The gauge-fixed action:
v m 1 2 :
S = d7|PmX _§P + be (6)
@ The BRST operator:

Q = cP? (7)
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@ As usual, physical states are defined as elements of the
BRST-cohomology:

Ker(Q)

HHibert = Tm(Q) (8)
@ A general wavefunction in a coordinate representation can be written
as
O(x,c) = ¢(x)+ch(x) (9)
@ The condition Q® = 0 implies that
Op = 0 (10)
@ And the condition §¢ = QS implies that
8¢ = Ow (11)
where Q(x, c) is given by
Q(x,c) = w(x)+ cw(x) (12)

with w, W being arbitrary gauge parameters.
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@ Using w one can remove the piece of gg(x) that does not satisfy
O¢ = 0. The Hilbert space is then described by ¢, ¢ satisfying

Op=0 , Op=0 (13)

where ¢ and qg are ghost number one and zero fields, respectively.

@ We call the solution ¢(x) a physical field solution, and ¢(x) will be
called the antifield solution.
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Spinning Particles

@ The spinning particle action is defined by
: 1 :
S = /dT|:Pme+2T,Z)m1/Jm— ;P2+XP-1/)] (14)
@ Since we are interested in studying superstrings, we will assume

m=20,1,...,9. In this manner, ¥ is an SO(1,9) fermionic vector.

o After gauge-fixing e = 1, x = 0, one is left with
m 1 w1 5 . .
S = d7r|PpX™ 4+ §¢m¢ — EP + bc + By (15)
and the BRST operator

1
Q = cP2+7P-w—§b72 (16)
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@ Since {y™,¥"} =n™", one needs to find a representation of the
Clifford algebra to define the ground state.

@ This can be done in two ways: Breaking SO(10) down to SU(5) and
defining a scalar ground state, or preserving 10D Lorentz covariance
and using a non-scalar ground state.

@ We choose to preserve Lorentz covariance, and so our ground state is
described by a 32-component spinor ¥ which behaves under the
action of ¥™ in the usual way

1
0 \@( )'B (17)
where (I)Ag is a 10D gamma matrix satisfying the standard Clifford
algebra.
@ A general wavefunction in a coordinate representation is then written
down as

**(x,c,7) = ¢0A,0(X) + C¢f\,o(x) + 7¢6‘,1(X) + C%ﬁfl(x) +..
(18)
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@ Analogously, an arbitrary gauge parameter can be expanded as

Q(x.cr) = whlol(x) + awflo(x) +1wg(x) + crwf () + ...
(19)

@ Physical states conditions then imply

c: D¢é0:0
A
i kBﬁbgo:O
. LA B | OpA —
cy _\ﬁk P10+ O¢pq =0
2, 1

A 1
B A
A k b1 — 010=0
\ﬁ B%¥0,1 2 1,0

(20)
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@ And the gauge transformations read

c: 5(1)’14,0 = DW(')L}O
1 A
: S, = — ws
Y ¢o,1 ﬁk BWp,0
ey S0ty = Ongl — =K'y
b b ﬁ b
1 1
2 A A A
. ) =——wig+—=
Y ¢072 2 1,0 \@(Wo,l)

(21)

@ One can then show that the gauge transformations (21) imply that
P2¢A =0, kABngB = 0 are the only requirements describing a
non-trivial cohomology. Hence, the Hilbert space is described by an
infinite set of spin—% fields: gbéo, '14,0' -
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BV Description of Super-Yang-Mills

@ The BV or antifield formalism allows us to quantize systems
constrained with reducible or irreducible symmetries.

o The basic idea is to add a ghost variable (c?) for each symmetry
present in the theory. The whole set of matter and ghost variables
will be denoted by &' = (¢/, c4).

@ Next, one adds an antifield for each field in ®/. The whole set of
antifields will be denoted by ®7 = (¢7, c4). Their ghost number
charges are related to each other by: gh(®/) + gh(®}) = -1.

@ These ingredients allow us introduce the so-called antibracket:

_ 6rASB  rA6.B
(AB) = Sei 307 50 5o (22)

@ The master equation is then defined as
(S§,8) = 0 (23)
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@ A solution to the master equation is called a master action.
@ Since the master action contains the original action, it is bosonic and
has ghost number zero. Therefore the master action satisfies

oS 01
ol oh

=0 (24)
@ To solve (24), one can expand S into a sum of terms with different
antifield number. Explicitly,
S = S5+5+5+... (25)

where the subscript stands for the number of antifields present in S;.
@ Therefore, one has

5L50 5L51 _
oo sor 0 (20)
0150615 01510151 = 0 (27)

ool sy - b S0y
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e For closed gauge algebras ([da;, 0a,] = da3), the only non-vanishing
terms are given by Sy, S1. So is the original action, and S; takes the
form

Si = ¢IRIA[B)c? + cifac A cBcC + byhA (28)

where fgc” are the structure constants of the gauge group, and
R'a[¢] is the gauge transformations of the matter fields:

5¢" = Ralp)e? (29)

and € is an infinitesimal gauge parameter.
@ We are now ready to apply this for our super-Yang-Mills action which
reads
i

5(07™"Vmx) (30)

1
So = /leXTr[—4anan+
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@ Using the standard gauge transformations for the gluon and gluino
fields one can compute R’ 5[¢]. Therefore,

R¥(y,x) = [—6%0m+ FP°AL(y)]6(y — X) (31)
RY(y,x) = £PX*2(y)5(y — x) (32)

where a, b, ... are Lie algebra indices, and [T?, T?] = fabeTe,

@ Hence, the master action reads
1 .
S = / d1%x Tr[ — ZF”’”an + é(mmvmx) + ia%, V¢

i e} - ] (33)
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@ The equation motion following from this action for the abelian case
read

8man =0 s ('.)/m)aﬁamxﬁ =0 ) 8ma*m =0 ) 8mC =0 (34)

@ The gauge transformations associated to the field and antifield
immediately follow from the master equation. Indeed, one can show

that
528
I _ K
0P = 7 SR
528
* K
60’¢l = 0 (5¢)K(5q>l (35)

leave invariant the master action.
e For instance, by choosing the direction of o¥ along c?, one finds (for
the abelian case)

SA™E = o (36)
@ Similarly, one gets for the other fields
Mham =0, 0pxh = (*y’")agé?mpﬁ , O0cck = 0em (37)
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Strings

@ The string action is defined by

S = —/drda[\/(X'X’V—(X2)(X’)2 (38)

where we conveniently fix Tg =1, and X'™ = a%X’".

@ The momentum associated to X is then found to be
oL X)X, — (X - X)) X!
P = OE - X)X - (X X)X (39)
oX \/(X . X’)2 _ (X)2(X’)2

@ Therefore, the system is constrained by the relations
P-X'=0 , P+(X)=0 (40)
@ They can be equivalently rewritten as
(P"£X'™2 = 0 (41)
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@ Thus, the first-order form of the Nambu-Goto action is given by

s = /dea [2Pm)'<’" + = (Pm + Xp) (P™ 4 X'™)
é / /
+5(Pn = Xp)(P™ = X™) (42)

where e, € are Lagrange multipliers enforcing the Virasoro constraints.
@ The gauge transformations generated by the Virasoro constraints read

SXM(0) = [[ do'ex(P+ X)), X(0)] = ~e(P+ X)"(0)
5X™(a) = [ [ do'Ey(P— X P().X"(@)] = ~&(P ~ X')"(o)
Pnl0) = | dole;(P XP(o), P)] = ~B(e(P + X')")(0)

1
ePnl0) = | [ do'ey(P— X)), )] = 0a(E(P — X')™)(0)
(43)
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@ One can also show that the Virasoro algebra is non-abelian since
1 1
[5(P£X)(0), 5(PEX)(o)] = F20,(8(c — o) (P + X)"(0)
(P £ X"m(co)

@ It is also not hard to show that the Virasoro constraints induce the
following transformations for the Lagrange multipliers

dce = é + edye —2¢0,e , 08 =€ — 80,6+ 2806 (44)

@ To quantize this model in a Lorentz covariant manner we choose
e=¢ = —1, then

S = /dT [2me'" — X?— P>+ b(c— ')+ b(c+ a/)}
(45)

@ In this manner, the BRST operator takes the form

Q = /da{c(P+2X/)2+a(P_2

2
) + 2bec’ — 2555’] (46)

Max Guillen Advanced Topics in Superstring Theory 03/03 19 /104



@ Using the e.o.m for P™ and introducing the conventional notation

0, =0;+0, , 0:=0.—0, (47)
one is left with the usual bosonic closed string model

S = / dzdz [axméxm + bdc + Baz] (48)

X" Xom _OXMOXy o=

Q = /dz(c82a + bcdc) —I—/dz(caz8 + bcoc)
(49)

@ For simplicity, we will focus on the open case which is described by
S = / dzdz [ax'"éxm + béc] (50)
Q = /dz(caX’"aXm—i—bcac) (51)

@ As is well-known the target space dimension must be 26 in order for
the BRST operator to be nilpotent at quantum level.
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@ The physical spectrum is then found by using standard OPE
techniques or oscillator mode expansions. For simplicity we will use
the latter.

@ To this end, we should remember that after mapping the cylinder into
the complex plane through z = e™™ with w = o + i7, the worldsheet
fields can be written as

X™(2,2) = x5"+pm/og|zyZ+Z"’7k(z*k+z*k) (52)
k0
by
b(z) = sz+2 (53)
k
Ck
c(z) = ZF (54)
k

@ As usual, the ground state is defined to be annihilated by all the
modes a}, ¢;, bj with kK >0, i > 1, j > —2, respectively.
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@ The most general wavefunction then reads

¢(X0,8T1,3T2...,b_g,b_3,...,
= [ % c]e™ 0 >

k,iyj

(55)

@ The zero mode of the Virasoro constraint (Lg) in the BRST-charge

then implies the familiar mass formula

25
k2+z (Nen + Nen + > N3, 1) (56)
n=1 m=0
o After splitting the spectrum into diferent mass levels, one finds

k>=—1 : ce*®|0> (57)
k2=0 = e*00> ga™e 0>, e 0>, c_ice® |0 >,

coclaTleik'XO\O >, coc_lcleik'XO\O > (58)

k=1 b_oce*@0> 4. . (59)

k=2 booe*0> ... (60)
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@ Since we will be interested in studying the scattering of masless
particles, let us restrict our study to the massless level of the string
spectrum.

@ The state-operator correspondence then dictates

d>k2:0(x, c) = CH+cOX™Ap+ dcB + cd*cD
+cOcOX™ A + c0cd?*cC (61)

@ The full BRST-cohomology condition requires that 9,,C = 0, and

O0"A, =B 0A, = Om\ OA, = 0mB 0B = OA
OMA, =0D 6A,=0S,—0md 0D=—-¢+0mS,, 6C=0",
(62)

@ These are exactly the fields, ghosts and their respective antifields of
the Batalin-Vilkovisky description of Yang-Mills (in 26D).
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Spinning Strings
o The spinning string action is defined by
S = / drdo [2mem P+ D + g <(P +X')?
r20mify) 4+ 5 ((P = X - 2075, ) 4w (P 4+ X')
10+ (P X)) (63)

@ The periodicity properties of the matter fermionic variables give rise
to the so-called (R) Ramond and (NS) Neveu-Schwarz sectors,

defined as
CS: ¢v™o+2m)=¢"(0) R, ¢¥v"(c+27)=—-¢"(c) NS
m(a +2m) =9™(0) R, ¢"(o+27) )™(o) NS
05S: Pm(0)=4"(0) Y™ (m) = P (7) R
Pm(0)=4"(0) Y7 (m) =~y (7) NS
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@ As done before, we fix e = & = —1, x = ¥ = 0. After solving the
e.o.m for P™ and introduce complex derivatives, one arrives at

S = / d’z {axméxm + ™Y + VO
+bdc + bOE + LIy + B@*‘y} (64)

@ Using a similar procedure as the one discussed in the bosonic case,
the BRST operator for the spinning string is found to be

Q = /dz[c(ax'axgw'awwv(ax-w)+bcac

Fe(0By - 20(87) + bﬂ fec (65)
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@ Henceforth we will concentrate on the open string model.
@ As before, we will make a mode expansion to analyze the physical

content of the theory.
@ The modes for X, b, ¢ were already studied. Therefore, the new

variables possess the following mode expansions:

Z k+2 (66)

Z+v £

Be) = > (67)
Z+v

7(2) fyk; (68)
Z+V 2

where v = 07% if the boundary condition is R, NS respectively.

@ Then, the ground state will be different for each sector. For instance,
the NS ground state is required to be annihilated by ", §;, v; with
k>0,i> —% J > % On the other hand, the R ground state is

annihilated by ¥, 8;, vj with k >0, i > -1 j > 1.
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@ To explicitly construct the ground states in both sectors one needs to
use bosonization techniques. For reasons of time, we will omit this
construction and just focus on the physical spectrum.

@ The Ly mode in the BRST-charge imposes again the mass formula for
each state in both sectors. For simplicity, let us just analyze the NS
sector.

@ The spectrum then reads

1
/<2=—5 : 7%]0>,c1wT%\0> (69)
k=0 0>, c1a™[0 >, 71971[0 >, [0 >,

2

coc1a™ |0 >, cpe_1c1|0 >, coﬁy%fyf%\o >, ... (70)
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@ As before, one can write down the vertex operators for these states as

O (xen) = 10+ ew- k) (71)
O x,10,67) = T An(x) + OX™ A+ Y Fro +
ghosts + antifields (72)

o With a little more effort the R sector can also be found.

@ In order to realize spacetime supersymmetry one needs to impose by
hand the so-called GSO projection. This operation removes the
tachyon and gives us a well-defined quantum mechanically theory.
However it makes life complicated when computing loop amplitudes
(sums over spin structures).

@ The resulting massless spectrum describes the Batalin-Vilkovisky
description of super-Yang-Mills (in 10D).
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Summary
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@ The quantization of the particle model is described by two scalars of

opposite statistics ¢(x), ¢(x) satisfying the massless KG e.o.m.

@ The quantization of the spinning particle is described by an infinite
set of spin—% fields satisfying the Weyl e.o.m.

@ The BV description of super-Yang-Mills is simple because of the
closure of the gauge algebra and it incorporates all the symmetries of
the theory through the introduction of ghosts and antifields to the
original model.

@ The bosonic string spectrum possesses a tachyon and it describes the
BV formulation of Yang-Mills in its massless level.

@ The superstring, i.e the spinning string after GSO projection, does not
have tachyons in its spectrum and it describes the BV formulation of
super-Yang-Mills in its massless level.
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Lecture 2
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10D Brink-Schwarz superparticle

@ The 10D Brink-Schwarz superparticle action is defined by
S = /dr {Pml'l’" - ZP2] (73)

where MM = X™ + i(04™6).

@ In 10D, the spinor representation is 32-dimensional and reducible.
The two irrep. are 16-dimensional and they are called MW rep.
Depending on its eigenvalue under 1, spinors are classified as being
chiral (x®) or antichiral (xq)-

@ The action (73) is invariant under worldline reparametrizations,
(global) SUSY transformations

30 =¢* |, 0X™=—i(ey™0) , OP™ =0, de=0 (74)
and the so-called (local) kappa symmetry
60% = (Y"K)*Pp, , 6X™ =i(007™0) , SP™ =0, de = —4if0%(75)
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@ The momentum associated to the coordinate 6% is found to be

oL
e = —— = —i(7"0)aPnm 76
p e (+"0) (76)

@ Therefore we have a constrained system. The constraints read d, = 0
with

d, = Po + i(')’ma)aPm (77)
@ The algebra satisfied by these constraints takes the form
{da,ds} = —2(7")apPm (78)

@ One can show that the kappa symmetry transformations are
generated by K¢ = —i(y™d)“P,,, which satisfies the algebra

(KK} = 2(y™)* P P? (79)
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@ Since P2 =0, d,, contains 8 first-class and 8 second-class constraints.

@ This can easily be seen by chossing a particular reference frame where
P™ = (P*,0,...,0). Then, using the 10D gamma matrices

0= (5 %) = (T30 0) 60

and the splitting of a 10D spinor into its SO(8) components, namely

= (%) (81)

where a,a=1,...,8 are the Weyl and anti-Weyl spinor
representations of SO(8), the constraint algebra can be written as

{da, dp} = —2V26,,PT |, {da,d;} =0, {ds,d;} =0 (82)

@ Then d; are first-class constraints and d, are second-class constraints.

@ It turns out that there is no simple way to separate these constraints
out in a Lorentz covariant manner.
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@ However, we can compute the physical spectrum in a simple way by
gauge-fixing the kappa symmetry.

@ In this manner, the semi-light cone gauge is defined by (y*6), = 0.
A simple way of seeing how this gauge choice can always be
implemented is by choosing the reference frame P™ = (P*,0,...,0)
and performing a kappa transformation on 6<:

1
0% = 0% 4 5,0% = 0% — (v K)*PT =0+ (v 7vT0)  (83)

2
where r = —55-(v"60)*. Then, one writes down
1 _ 1, _
0% = —5(’Y+’Y 0)" — 5(7 o) (84)

Putting all together we see that §"* = —%(v"~~6) which satisfies
(770)o = 0 since (y7)? = 0.
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@ Then, the gauge-fixed BS action takes the form

S = / dr [mem —i(0y=6)Pt — ;P2] (85)

@ One then defines the variables $%: as §7 = 2%(P+)%(7_0)a, and
rewrites the action in the form

s — / dr [mem v ésasa - §P2] (86)
@ The momentum associated to 57 is then given by
oL i
Po = p% T 2> (87)
which defines the constraint
~ i
da = pa+t 553 (88)

@ Using the standard Poisson brackets for p, and 52 one finds
{da,dp} = dap (89)
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@ Using the usual Dirac procedure to quantize systems with second
class constraints, namely

{A,B}p = {AB}p—> {A¢}pC {o".Blp  (90)
e,f

where {¢¢, ¢f}p = Cf, we get in our case
{52,8%}p = 4% (91)
@ Using the triality property of SO(8), that is
(07)a3(0)ba + (07)aa(0")ps = 26764
(0")aa(0?),p + (07)aa(0"),, = 280, (92)
(0)a5(0" )iy +(0")aa(0")py = 20260,
one can show that the physical states realizing (91) are given by
1, .. . 1 .
%(O”)aé“ >, Sii>= ﬁ(o—;)aé]a > (93)

@ These are the light-cone gauge equations of motion of 10D
super-Maxwell.
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10D Green-Schwarz Superstrings

@ The 10D Green-Schwarz superstring action is given by

S = / drdo [P ng' + BrinopzMoyzV

+e(Pm + I_IT)(Pm + I_Il m) + é(Pm - I_IT)(Pm - nl m)

where ZM = (X™ 62 60%), and

] ]
I'IM = 6MXm — E(Hyy’"(?pﬂ,_) — 5(9,;7’"(%6,;) , U= 1, 2. (95)

@ Also, e, € are Lagrange multipliers enforcing their respective
constraints and B,’f’j,\t, is the flat value of the type Il supergravity
2-form superfield, that is

Bam = i(Ymb)a , Bam = —i(ymOr)a . B,z = (7"0L)a(vmbr);(96)

Max Guillen Advanced Topics in Superstring Theory 03/03 38 /104



o Explicitly,
S = /deO’ [2Pml'l()" + i XM |:(9L’ym809L) — (GR’ymao(gR)]

—i0pX™ [(9L7m319L) - (9R’Ym819R)]
+(0Ly" 0001 ) (OrRYmO10R) — (017" 9101)(0RYmO0OR)
F5 (P )P+ My ) + 5 (PP = M) (P~ M)
(97)
@ This action is invariant under the N = 2 SUSY transformations

. . i i
80F =€ , 00p =€% , OXT = Q(EL'ymHL) + E(GR’ymﬁR) (98)
and )P™ = de = 0.
@ To prove this one needs to use the 10D gamma matrix identity
(V") (ap(Ym)s)e = 0.
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@ This very same identity allows us to show that the GS superstring
action is invariant under the kappa transformations

607 = (v"kL)*(Pm — M1m) 0% = (v"kRr)*(Pm + M1m)
SX™ = —é(aewmeL) - é(éeRymeR) Se = 4ik Op0L
P = f(é@L’ymal(gL) — i(d@Rfym&lGR) e = 4-I'I£R8[_(9R (99)

where Ogr = 0y — €01, 0, = O + e01.

@ Indeed one can show that the action transforms as

S = / drdo { — 2i(8017mDROL)(P™ — )

de 0é

=2i(00rYmAL0R)(P™ + NT") + (P + M) + —(P — My)?

2

(100)
It is not hard to see that the transformations for the Lagrange
multipliers given in (99) will exactly cancel the first two terms.
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@ The momenta associated to the fermionic coordinates then read

oL

o = 2 imo Bz o
260
OR e m 2

PR& = = i(Y"0r)aPm — BiaionZ" (102)
R

@ Then, the system is constrained by

dia = Pra—i(Y"0L)aPm+ B0y ZN (103)
dra = PR.G — i(’meR)aPm + Bg"}\ﬁalz’\’ (104)
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Explicitly, they read

dia = Pra—1(Y"00)a(Pm—T1m)+ (¥"01)a(0vm0161)
dra = Pra— iI(Y"OR)a(Pm+ Mim) — (v"0R)a(0RrYmO10R)

(105)
@ A straightforward computation teaches us that
{dia,digt = —(P" =N1)(Vm)as
{drasdrgt = —(P™+ 1) (m)as
{dia,dra} = 0 (106)

Since (P 4 M1)2 = 0, we will have 16 first-class and 16 second-class
constraints. There is not simple way of separating them out in a
Lorentz covariant manner.

@ However, we can use the light-cone gauge to study the physical
spectrum.
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@ Let us first write down the action in conformal gauge e = e = —1;

s — / d2z[8Xm5Xm—i@X’"(meéﬂL)—iéX'"(QRymaGR)
1 _
—5(9L7m39L) [(9L’Ym59L) + (9R7m59R)]

—%(0;;7’"89,?) [(HL’ymé@L) + (HRfymé&R)” (107)

@ Then, we use the residual symmetry + kappa transformations to fix
the light-cone gauge:
Xt =xt+ptr, (v70.)a =0, (vT0r)a =0 (108)

e In this gauge, all the quartic terms in 6 in (107) vanish and we are
left with

5 = / d2z[ax"5x"+ %55555 + %5,‘385,% (100)

3 N 3 A
a_ o3 /intpa 3 _o3; /Jintpa
where 57 = 24i\/ipT0], Sg = 24i\/ipT05.
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o If the chiralities of the SO(8) spinors are the same (opposite), the
superstring is Type 1IB (Type I1A).

@ After performing a Wick rotation and making a proper assignment of
conformal weights to the free variables in (109), one can expand in
modes as we did when we studied the spinning particle. Therefore,

K@= XE=2 g

S; 5=
Sia) =2 Sk(@) =2
n 4 n

@ It is not hard to see the modes will satisfy the following algebras:

a
S
n+%

(110)

[Xi7pi] =&Y [ Ims n] = m5”(5 m,—n
{sz2,851 = 575, _, (52.5b) = 55, _,, (111)
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@ To compute the mass spectrum, one should first compute the
momentum density. Using the standard Noether procedure, one finds

J™ = i9X™ + (0py™00R) ., J™ = idX™ + (0,4™56,)(112)

@ Using the standard definition for the momentum
p" = f{ dzJ™ — ?{ dzJm (113)
one gets pi = ﬂaé, and
= 2; > [ainaf, 3,5+ nS?,57 + n;:éngg] (114)

@ Therefore, using that 36 = 56, the mass operator for the closed
superstring states takes the form

o0
M2 = 2 Z [ai_naf, +3 3 +nS? 57+ ngf,,gf;’] (115)
n=1
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@ Since the open superstring is only defined in the upper half-plane, the
mass operator for open superstring states is given by

M? = Z [a"nai, + nSanSﬁ} (116)
n=1
@ The massless spectrum is then found from the algebra satisfied by the

fermionic zero modes. For the open superstring, this algebra is the
same as the one found in the superparticle model, therefore

1, . . L, .
%(O’I)aéll >, S5l >= %(a )asla > (117)

so the ground state of the GS open superstring describes 10D
super-Maxwell.

Sgla >=

@ This vacuum will be denoted by |aj > or, equivalently, 8, @ 8..
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Spectrum of open superstrings

Mass States Bosons| Fermions
MZ=0 |é,j > 8 8
o | M2=1 | a' |5 >, Sl > 128 128

M? =2 || a,|3 >,a";a%;|aj >, | 1152 | 1152
S%,laj >, 52,5°5) >,
Silal—lléj >

Table 1: Spectrum of open superstrings.

@ The massless spectrum of closed superstrings depends on the type of
theory we are studying. They can easily be found from a tensor
product of two massless open superstring states:

Type lIB : (8, ©8,)® (8, ®8.) (118)
Type lIA : (8, ®8,)® (8, ®8,) (119)
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@ Using standard group theory arguments, one can write (118)-(119) in
terms of SO(8) irrep.

(120)

Type IIB 1228303591028 ®35)s® (8; D 8; ® 565 56s)r
Type IIA (1228303598 56)5 @ (8; D 8. D565 D56.)F
Spectrum of Type IIB superstrings
Mass States Bosons Fermions
M?=0 | ¢o ® oo . 128 128
M? = a 1o ® 3 o, | 32728 32728
° —_ ~
52160 ® SPi¢o
aLl(bO & .Sil(bOy
52160 © 710
M?> =8 | a 027 o, ... | 2654208 2654208
Table 2: Spectrum of Type IIB superstrings.
Advanced Topics in Superstring Theory 03/03

48 /104



@ The light-cone gauge is preserved by the supersymmetry
transformations:

1 o
5SE = \/2ptni,  0SP =i, /pjax'(a')aaqé

. 5 3 1 =i iyas
0Sh=/2ptnh, O0Sp=i pjaxl(al)aaff?,é
5X' =0 5X = —iy | (Si0er) — iy | —(Sro’
=0, = — pj( Lo z’fL)—I pj( RO gR)

(121)

which are nothing but a combination of the original supersymmetry
and kappa transformations.

@ In addition, the light-cone gauge can be broken by a Lorentz
transformation since

500 = e+ () + () + e ()10

i
and (y"y70) # 0.
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@ However, it is always possible to perform a kappa transformation such
that the light-cone gauge is respected.

@ This implies one should redefine the Lorentz generator J~/ so that the
modified Lorentz transformation acts on S} as

1 1 X! ING) AP
5SE = _§€+—5La+ 6l—aX+Sa 61—8X+( J)aa(o_ )ébSLb
(122)

@ One can now compute the light-cone gauge Lorentz generators, using
the standard Noether procedure. The result is

M™(z) = 2i(XImax™) + 2X[M(9y"06R) — %axp(ewpym"m)
+i(9L7p89L)(9L7p7mn0L) + 2(9R7p5’9R)(9R7me"9R)
i
+§(9R7p59R)(9L7p7mn9L) (123)

and similarly for M™(z).
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@ The Lorentz charges are then computed to be

. o0
I

2> (amaf —a )+ NET (124)

L — X[mpn]_i
k=1

@ The only non-zero contribution of N comes from
i j
NE = - Zk:(SkU”Sk) (125)

Therefore, the N,’.; piece of the modified Lorentz transformation
preserving the light-cone gauge (122) is a pure kappa transformation.
@ One can check that the charge generating the transformation (122)
takes the form
1 [ oX

- 1 i
N = S (SoTS) (126)

o All these ingredients allow us to show that [J/~, #~] = 0 if and only
if D =10.
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Summary
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@ The 10D BS superparticle exhibits manifest supersymmetry and hides
a local fermionic symmetry called (Siegel) kappa symmetry.

@ The nature of its constraints (first- and second-class) does not allow
us to separate them out in a simple way respecting Lorentz
covariance.

@ The superparticle spectrum is easily calculated in light-cone gauge and
it describes the physical degrees of freedom of 10D super-Maxwell.

@ The GS superstring can have at most N = 2 supersymmetries and it
can be constructed in D = 3,4,6,10 dimensions.

@ The nature of its constraints does not allow us to quantize it in a
Lorentz covariant manner. Light-cone gauge analysis is simple, and
the physical spectrum is easily obtained and shown to be
supersymmettric.

@ To preserve the Lorentz algebra at quantum level, the spacetime
dimension must be 10.
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Lecture 3
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10D Super-Yang-Mills in Superspace

@ As we saw before, the (N=1) 10D superspace is described by the
coordinates X™, <.
@ Using these coordinates, one can define the operators
Qe = 00— 1i(7"0)aOm (127)
which realize the SUSY algebra {Qn, Qs} = —2i(7")as0m.
@ The supersymmetric derivatives can then be introduced as

Dy = 0o+ i(Y"0)a0m (128)

and satisfy {D,, Dg} = 2i(7™)0pOm,{Da, Qs} = 0.

@ These objects can be written in a more compact notation by
introducing the so-called (super)vielbein fields E4", Ey? satisfying
EAMEMB = 55, EANEMA = 5/\/\//] Then,

Da = ExMo (129)
where Oy = (Om, On)-
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@ We then define the 1-form basis
EA = dZMEWA (130)

which will allow us to implement SUSY transformations as coordinate
transformations in superspace.

o Explicitly, the matrix EMA takes the form

oy 0
Ev* = " 131
M <_i(’ym9)a 65) ( )
@ We can now introduce a 1-form (super)connection and define
V=d+A (132)

where A is Lie-algebra valued.
@ The (super)field-strength is then defined in the usual way

F = dA+AAA (133)
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@ It is not hard to see that ' must satisfy the super-Bianchi identities
VF = 0 (134)

o Explicitly, the 2-form superfield F can be written as follows

1
F = 5EBEAIFAB = d(EBA) + EBEAA AR (135)

which implies

Fag = 2DuAgy +28aA + Tag“Ac (136)

where TA = dEA is the so-called (super)torsion.

@ Using eqn. (131) one can show that the only non-zero component of
TAis given by T,5™ = —2i(v™)as-
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@ Therefore, one has

Faﬁ = DC!AB + DﬁAa + {AQ,AB} — 21'(’)/m)a5Am (137)
Fra = OmAa — Dol + [Am, Al (138)
Frn = OmAn— OpAm + [Am, An] (139)

@ Or, equivalently

Fag = {Va,Vs} = 2i(7")asVm (140)
Frna = [vma Va] (141)
Fon = [vma Vn] (142)

@ Using similar manipulations, the Bianchi identities in component form
read

ViaFscy + Tag"Fipcy = 0 (143)
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o Explicitly,

ViaFss) +2i("")(0pFsym = O (144)

vaaﬁ + 2v(a]F,B)m — 2[(7")Q5an = 0 (145)
2v[an]a +VolFmn = 0 (146)

v[mIan] =0 (147)

@ To solve these identities, one needs to impose constraints.
@ Conventional constraint:

(Y")*F,s = 0 (148)
This constraint kills one spin—% field present in the spectrum. Indeed,
one has
Fag = (Y")apFm + (7" )asF mnpgr
Fma - Fma+(7m)aﬁwﬁ (149)
where Iﬁ‘ma is y-traceless, and
Fro = O 409650 + ... (150)
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@ Using the same decomposition for f,£,1a) one finds it contains a spin—%

field A of the same mass dimension as x® (3), the zeroth
f-component of W®. Therefore, eqn. (148) reduces the number of
spin-% fermions to one.

o Notice that this constraint can always be satisfied by performing a
field redefinition, namely Ay = (Aq, Ap — 3#2(%7)“61?&5).

o Dynamical constraint:
(") By = 0 (151)

This is the constraint which puts the theory on-shell.
@ All in all, 10D SYM is described by setting

Fop = O (152)

@ The Bianchi identities can then be cast as
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(V") sFsym = 0 (153)

v(aFB)m + i(’y")agan =0 (154)
2V[an]a +VoFmm = 0 (155)
VimFu = 0 (156)

o Eqgn. (153) sets I, = 0, and so
Frma = (’Ym)aﬁwﬁ (157)

e Eqn. (154) will provide a relation between W¢, F,,,. Indeed, the
1-form and 5-form components of (154) must vanish, and so

l-form — C=0, F,,=2iC,
5-form  — Cpmppg =0 (158)

where
VWP = 65C+ (v™)a’Crn + (7" o Crnpg ~ (159)
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@ Therefore,

i

Vawﬁ = _E(an)aﬁan (160)

@ This equation implies that the (n+1)-th 6 term in W is related to
the n-th 6 term in Fp,,.

@ In addition, eqn. (155) can be used to demonstrate that no new fields
will appear in the #-expansion of W<.

e Finally, eqn. (156) is just the usual Bianchi identity. Therefore we
have the right field content of 10D SYM.

@ The equations of motion immediately follow from (155), (160) and
the dynamical constraint {V,, Vg} = 2i(v")asVm. Explicitly,

(Y"apVmW’ = 0 (161)
VnE™ = Syia{We, W7} (162)
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@ In a very similar way, one can describe 10D SYM by using the gauge
field A, and its gauge transformation. After removing spurious terms,
the gauge potential possesses the following #-expansion

H m 1 mn
Am = am+i(07™) + ... (164)

where dam = OmA + [\, am].
@ One can check that coordinate transformations on superfields indeed
induce SUSY transformations. For instance,
SQW* = PQs(W) (165)
After expanding in components, one finds

5 = —é(mm")aFm,, (166)

as desired.
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@ In order to make contact with what we discussed in the BS
superparticle context, let us write down the abelian version of the
dynamical constraint we just studied:

DQAB—I-DﬁAa = 2[(’ym)a5Am (167)

@ In light-cone gauge these equations reduce to the equations satisfied
by physical spectrum of the BS superparticle. For simplicity, let us
assume the only non-zero component of the momentum is k™. One
then has A= = 0. Therefore,

D.Ap+ DpA, = —2V2i5,,AT (168)
D.Aj + DiA, = 2i(0"),;A, (169)
DéAb+DbAé =0 (170)

Using the algebra,
{D,,Dp} = —2V2i6,pk™ , {Ds, Dy} =0, {D3,D;} =0 (171)
one learns that the component A, is pure gauge (0A, = D, N).
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@ In this way, one is left with
DAy = 2i(0")50A (172)

and A;(67).

@ Similarly, one can use the e.o.m Fp,o, = (7W),, to show that

) .
DA, — _*{H(a')aéAé (173)

@ Up to numerical coefficients, these are the equations of motion we
found in the BS superparticle spectrum.
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10D Pure Spinor Superparticles
@ Let us take the gauge-fixed BS superparticle action

s = /dT {mem + ésasa - §P2 (174)
and add a new couple of conjugate fermionic variables (6%, pg).

@ In order to recover the original theory, one needs to add a fermionic
symmetry that allows us to remove the new degrees of freedom
introduced. This fermionic symmetry will be generated by

Aot
¢ 21y/PF

where dy, = py + i(7Y™0)aPm. This constraint is first-class since

a'a (’YmFYJrS)Oé'Dm (175)

1

{8067 85} = _ﬂ

(Y )apP? (176)

Max Guillen Advanced Topics in Superstring Theory 03/03 66 /104



@ Therefore the action can be rewritten as

A

S = /dT [me'" + ésa,éa — gpz + pab® + fd, | (177)

o After gauge-fixing e = 1, f* =0, the BRST operator is given by

~ PN 1 . «
= PP+ N, — (M TA)b 178
Q@ = P4 A% oo () (178)

@ We will now show the BRST-cohomology of Q is equivalent to the
BRST-cohomology of @ = A*d,, with A* being a pure spinor
satisfying Ay A = 0.

@ To prove this, we first show that the (A,?-cohomology is equivalent to
the Q’-cohomology, where @ = \N'“d,, and N’y )\ = 0. Then, it will
be demonstrated that the Q’-cohomology is equivalent to the
Q-cohomology.
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@ The first equivalence follows from the following argument: Define
Qo = A§da. Then Q% = —52+ (Mo ho)P2.

@ Let V be a state such that QoV = (Aogy" o) W. Therefore,
QW = —55:P?V.

@ Then, the state V = V — 2cPT W is annihilated by CA,) In this
manner, if a state V is BRST-closed under Q’, there is always a state
V which is BRST-closed under Q.

@ Now let us assume that there is a state V satisfying
V = Qo+ (AoyT o) Y, for some Y.

° Qne can then show that (A?(Q +2PtcY) = V, where
V =V —2cPTW. Thus, if there is a state V which is BRST-exact
under @', there is always a state V which is BRST-exact under Q.

@ One can easily reverse the arguments and the first equivalence is
proved.
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o The constraint (M) = 0 implies that (y")\/)? is an SO(8) null
spinor. Therefore it is left invariant under an SU(4) subgroup. Under
this SU(4) subgroup, the chiral spinors (v~ X),, (y7d)a, S? split into
the 4, 4 representations as follows

63 = (67X 6" )A)
A G
57 = <5A7574) (179)

where AA=1,....,4
o After performing the shift

i
Sa = Sp— ———(v"d)a 180

st 180
the BRST operator will change by a similarity transformation.
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o Explicitly,
Q e Q= Q' 11Q,5]+5[[Q.5].5] + ... (181)

here S = KS3(7+d)a, and K = ———.
where (YT d)a, an N
@ Then, the first commutator is computed to be (assume only P* # 0):

VPt
[Q/, SAdA] = —)\IO‘SA{da, dA} + 21 /\""‘{Sa, SA}dA (182)
4
@ To evaluate this expression we split d,, S? into their SU(4)
components as follows

1 1
Sa=—=(5,+ iS5, Sz = —(52; — 5,
A ﬁ(Z ’2+1) A \@(2 ’2+1)
1 1
da = —=(dbs + idb, dz = —=(db; — idb;
A \/5(2 I2+1) A \/5(2 I2+1)

(183)
@ It is not hard to see these variables satisfy the algebra
{Sa:Sat =2maa  » {da,dz} = —4V2nzPT (184)
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@ Hence,

—iKV2[Q',Sada] = —\/2V2Pt X3Sz —Nzda  (185)

o Notice that this implies [[Q’, S],S] = 0, and so all the other
contributions in the BCH formula vanish.

@ Then, we are left with
Q= @ —iKV2[Q,Sads]
— Nady + Nada + \/2V2P T\, S; (186)

where X' is null. If we define A* = (X2, X/,,0), one can write

Q = A%, +\/2V2P+)\4S; (187)

@ Next, we use the so-called quartet argument which states that the
cohomology of a BRST operator g is the same as the cohomology of
a BRST operator ¢' = g + cb, where (a, b) and (c, d) are bosonic and
fermionic conjugate variables, respectively.
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@ Using this result, one learns that
QN — Q=) (188)

where A% is a pure spinor satisfying Ay™A = 0, and the action takes
the form

) ) . 1
5 = / dr {mem + Pab® + wad® = - P? (189)

@ In this manner, we have shown that the pure spinor superparticle
defined by (189), (188) is physically equivalent to the semi-light-cone
10D BS superparticle.

@ In this pure spinor framework, the problem of covariant quantization
is translated into a cohomological problem.
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@ To find the physical spectrum, we write down the wavefunction in a
coordinate representation as

V(x,0,0) = Wo(x,0) + Wi(x,0,A) + ... (190)

where the subscript indicates the polynomial degree in A.
@ Let us focus on the ghost number one sector, that is

Vi(x,0,)) = A*V,(x,0).
@ The physical state conditions then require
QU1 =0 — XND,V;=0
- (y™PI)E D,V =0 (191)
and also,

U1 =QQ — 6V, =D,Q (192)

for some arbitrary parameter Q.

e Eqn. (191) is nothing but the dynamical constraint studied in the
previous section, and eqn. (192) is the usual gauge transformation for
the fermionic gauge potential.
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@ Therefore we identify
Va(x,0) = Au(x,0) (193)

@ In this manner the 10D pure spinor superparticle describes 10D
super-Maxwell in a manifestly supersymmetric way through the ghost
number one state

Wi(x,0,)) = AAu(x,0) (194)

@ One can use the gauge transformation (192) to fix the HS gauge:
0*A, = 0, in which A, look like

Ba(0) = 5(07™)aAn —%(evm)amme)
32(9%) (07™6) -+ o5 (Om)a(61™P0) Onx90)
4 (b (199
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@ It turns out that one also finds non-trivial cohomology at ghost
numbers 0, 2 and 3.

@ The ghost number 0 sector will describe a constant which can be
identified as the ghost field of the BV description of 10D
super-Maxwell.

@ The ghost number 2 sector will describe the antifields of 10D
super-Maxwell through the superfield A,z = (7""P9") 0 gA mnpgr
satisfying

/\a(/\’ym"pqr/\)DaAmnpqr =0
0Amnpgr = DYmnpgr\ (196)

where A, is an arbitrary gauge parameter.
@ The ghost number 3 sector describes a scalar through the structure

(Am0) (AMynl)(Ay,p0) (0™ 0) " (197)

which is identified with the ghost antifield.
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@ Therefore, the 10D pure spinor superparticle describes 10D
super-Maxwell in a manifestly super-Poincaré covariant way, in its BV
description.

@ The \36° structure will play an important role when computing
amplitudes. It can be seen as the pure spinor analogue of the scalar
cdcd?c in RNS.

@ Then, 10D super-Yang-Mills can be described by generalizing our
previous construction as

S = Tr/dlox(;\UQW+ %\IJ\U\U) (198)

where (\36%) = 1.
@ Indeed, the equations of motion and gauge transformations following
from (198) read

QU4+gWW =0 , 6V=QA+[V A (199)

which coincide with the physical conditions studied previously.
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10D Pure Spinor Superstrings

@ Using similar arguments as the ones given in the superparticle
context, the Type Il pure spinor superstring is defined by the action

szz/fﬂmﬁwwmwwwﬁW+MW+%w@

(200)
and the BRST operator
Q::/&W%+/&V% (201)
@ Notice that the central charge vanishes. Indeed
c=10—-2x164+2x11=0 (202)
@ Furthermore, the ghost Lorentz current satisfies the Kac-Moody
algebra
mlp,,qln mlp pyaln _ opnlp pjglm
N (NP () — ST 20PN = 2TENTE )

(z —w)? z—w
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@ Remarkably, this is exactly the contribution required in

6 = %(mmne) to reproduce the same Kac-Moody algebra
generated by the RNS current )",
@ The massless physical spectrum is then easily found at ghost number

(1,1) as
V o= MA\%A.s (204)

where A4 satisfies the equations of motion

(,ymnpqr)oz,é’ DaAﬁ& _ (fymnpqr)écﬂ D@Aaﬁ =0 (205)
@ And gauge transformations
5Aa& = DaQ& + Ddch
(’Ymnpqr)aﬂDaQ,B _ (,ymnpqr)@BD&QBA =0 (206)

@ These are nothing but the Type Il supergravity equations of motion
and gauge transformations in superspace.
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@ A simple way of seeing the operator V correctly describes the Type Il
supergravity degrees of freedom is by expressing A,s = A A4, where
the spinor superfields are the same as the ones studied in the pure
spinor quantization of the superparticle. Therefore, the superfield
A, will contain the tensor product of the states in each spinor
superfield, that is the NS-NS, NS-R, R-NS, R-R states.

@ A similar analysis can be done for the hetetoric pure spinor supertring
to conclude that N = 1 Super-Yang-Mills and N = 1 Supergravity are
the massless states in the pure spinor BRST-cohomology.

Max Guillen Advanced Topics in Superstring Theory 03/03 79 /104



Summary
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@ 10D super-Yang Mills can be described in superspace after imposing
conventional and dynamical (or physical) constraints.

@ The light-cone version of these superspace equations of motion
coincides with the equations found in the light-cone quantization of
the 10D BS superparticle.

@ The 10D BS superparticle in semi-light-cone gauge can be shown to
have the same BRST-cohomology as the pure spinor superparticle,
and so they both are physically equivalent to each other.

@ The pure spinor superparticle describes 10D super-Maxwell in its BV
version in a manifestly super-Poincaré covariant way.

@ 10D super-Yang-Mills can be described in the pure spinor framework
by a Chern-Simons-like action.

@ The pure spinor superstring possesses a vanishing central charge and
its quantization provides a manifestly supersymmetric description of
the several string states. In particular, the massless levels of the pure
spinor superstring describe Type Il, Type | supergravity and 10D
super-Yang-Mills in 10D superspace.
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Lecture 4
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Pure Spinor Superstring Scattering Amplitudes

@ In the RNS formalism of open superstrings, the ghost number one
state (at picture number zero) reads

v = ce PP A e X (207)

@ As seen before, this operator describes the gluonic state. It turns out
that one can define an integrated vertex operator [ dz U(z) such that

U = {bV} (208)
or, explicitly
Ut = e Pym AL e X (209)

e Using that {Q, b} = T and the standard Jacobi identity, it is easy to
see that

{Q,U} = oV (210)
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@ After bosonization (or fermionization), one can define the so-called
picture charge. This quantum number is then used to write down
vertex operators in different ways.

@ At tree-level, one needs to saturate the 2 zero modes associated to
the superconformal ghost «y, and so one can choose to have 2 picture
number -1 vertex operators and N-2 picture number 0 vertex
operators in the N-point correlator.

@ The picture number O vertex operator for the gluonic state reads

1 ,
vO = c(0X"An, + 5z,z;mz/;"F,,m)e'k'X (211)
and its corresponding integrated version takes the form
1 .
U = (OX™ Am + SU™" F )€™ (212)
@ The N-point gluonic amplitude is then given by

AL, N) = (VD) (1)/d23 U0 (zs)...

(0) (0)
[emaUQ @Vl )
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@ In the pure spinor formalism, we have seen that the unintegrated
vertex operator in the massless sector is described by

Vo= A%A, (214)

@ One can then use the relation {Q, U} = 9V to define an integrated
vertex operator. Explicitly,

1
U = 00%Ao+N"Am + daW* + ZN"F oy (215)

@ The prescription to compute scattering amplitudes is then proposed
to be

AL,...N) = <v1(0)v2(1)/dz3u3(z3)...
/dzN_1UN_1(zN_1)VN(oo)> (216)

where (A\30%) = 1.
@ It turns out that this prescription is supersymmetric and decouples
spurious (BRST-exact) states from the physical amplitudes.
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@ Let us see some explicit examples. The 3-point function is given by
.A(]., 2, 3) = <V1(21)V2(22)V3(Z3)> -+ (2 — 3) (217)

@ Due to momentum conservation, there is not KN factor. To get the
3-gluon amplitude we can use the following distribution table

A1a(0) | A2a(0) | Asa(P)
1 1 3
1 3 1
3 1 1

@ One then finds (up to normalization factors)

-’4(18725738) = kénAer2sA3n - kénAerZnA3s + k{nAlnA2rA3s

(M)A 0)(Ap0) (04P770))
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o After using the identity

(M) (M"Y (APO)(Ovqrst)) = %5;’12" (218)
one obtains
A(1,25,38) = |[(A1-A2)(As- ka) + (A1 - A3)(A2- k1)
+(A2 - A3)(A1 - k3) (219)

@ The final result must be dressed with the standard Chan-Paton
factors.

@ In a similar manner, one can get the 2-gluino 1-gluon amplitude from
the following theta distribution

Al a(e) A2o¢(0) A3o¢(9)
1 2 2
2 1 2
2 2 1
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@ The result can be cast as

Atg2e 3, = A1y ) {(AY"0) (A" 0)(AyP0) (07 mip?))
= Arm(x27"x3) (220)

@ Analogously, one can compute the 4-point function for closed string
strates as follows

A(1,2,3,4) = <V1(21,21)V2(22,22)V3(23,23)/Cd2Z4U(Z4,Z4)>
(221)

where V(z,z) = V(2)V(2), U(z,2) = U(2)U(2).
@ One can use SL(2,C) invariance to fix z1 =0, zp = 1, z3 = 0.
@ The relevant OPEs to be carried out involve the exponentials with 17

(and M™) and the terms proportional to d, and N™ in U (and U)
since,

N (2)A*(w) — E/M , Do(2)V(w) — _ﬁ, DoV

4 z—w 2z—w

(222)
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@ Then, one finds

o F1o Fo1 Fio Fx
1,2,3,4) = (2)2 [ gz 224 "2 (22, 2L
A(”?) (2)/ Z4<Z4+1_Z4 24+1_24
24721 — g 73O (223)

where

Fio = ik"((AA1)(AA2)(A3)Asm) + (A1 m(AA2)(AA3)(AY™W,))
(224)

and Fp; can be obtained from Fio after exchanging 1 < 2.

@ Using standard identities of [-functions, this amplitude can be written
in the compact way

_ ( 73
A(1,2,3,4) = KoKy 5 y ”
F(1+T)F( +T)F(1+T)

where Ky = %(uFlz + tFo1).
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o Explicitly,

Ko = {((OmA1n)(AA2)0™(AA3)(AY"Wa))
1
—§<8m(AA1)8”(AA2)(AA3)F4 mn) + (1< 2) (226)
o After using superspace equations of motion and ignore BRST-exact
contributions, this object can also be written as

Ko = —((AAL) (A" W2)(Ay"W3)F4 mn) (227)

@ This expression encodes the kinematic factors for any scattering
amplitude of 4 SYM physical states (gluons or gluinos). It can be
shown the bosonic sector of this correlator reproduces the standard
tg-tensor contracted with the four field-strengths.
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Non-minimal Pure Spinor Formalism

@ Using the standard quartet argument, one can introduce two pairs of
conjugate variables (A, W?), (ra,s?), where A, is a pure spinor and
ro satisfies Ayr = 0, through the modification

QR = /dz [/\ada—i—raﬁ/o‘] (228)

so that the BRST-cohomology does not change.
@ The action for the non-minimal pure spinor open superstring then
looks like

s - / o2 [ax'"éxm - Pad0® + wadAS - TN + so‘éra}
(229)
@ The tree-level scattering amplitude prescription is given by
.A == <NV1(21)V2(22)V3(Z3)/dZ3U3(Z3).../dZNUN(ZN)>
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o Explicitly,
A = / [dA][dA][dr]d ON N NN L, 55(6) (231)

where,

[AN XN = €y primnns TOPOELRSl gL gaen(232)

[dN] Xadghy = P T et s @Ay - dApy (233)

[drl = €ay.anng.ns T ORI NoX 900 gem
(234)
and,
N = l@-00} _ g—M—r0 (235)

@ This non-minimal prescription is easily shown to be equivalent to the
minimal one studied in the previous section.
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Multiloop Prescription

@ Using the non-minimal formalism, one can construct a b-ghost
satisfying {Q, b} = T. It takes the form

_ 1 _ _ _
b = 50Ny + ——= 21" (AYmd) — Npp(AYT"00) — I\ (A6
00+ 30y |21 md) = N (F™08) — s (506)

so0] 4 B™0)
—)\8 9:| + W (d’Ymnpd) + 24Nmnnp
(ry™™r) = (ry™™r) 5
= (Aymd)Npp + ——<== (A" )N Ny, (236
@ Using this b-ghost a g-loop amplitude prescription is formulated as
3g—3 N
A = ) T1 dmnitp) [T [ d0()
i=1 j=1
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@ A conformal weight 1 field ®(z) can be written in a g genus surface as
®(z) = (z) + Z ®'Q, (238)

where ®(z) have no zero modes and obeys fa/ ® =0, and Q; are the
g holomorphic 1-forms satisfying fa’ Qy=4y.

@ One then needs to integrate out the g zero modes corresponding to
Wq, Wy, s, d,. For such a purpose, one uses the measures

'] = O™ )a 0" ka (V9P s (g s €572
_ dwi ... dwl;
| = ™)™ 2 P (o) s
_ ~dv‘v dWll
('] = () 200 ™) )M s (g s €250
D5 L0 (239)
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. . . AN O— I 1
e The regularization factor will be chosen as N = e~ M—rf—wwi+sd

@ Therefore the N-point g-loop correlator takes the form

_ r £ WI V—Vl SI 16 4/ 16
A = /[d)\][d/\][d]ll:[l[d 1[dw'][ds'](d*®d")d*CONF(6)
(240)

@ This regularization scheme can be safely used up to two loops, since
when A\ — 0, the measure goes like

[d)\][d/\][dr]ﬁ[dw’][dW’][ds’](d16d’)d160N —  \Bf3ejll
- (241)

and so the integrand must diverge slower than A=8-38X~11 As one
needs to insert 3g-3 b-ghosts, and each b-ghost diverges as A\™*\~3,
g=2 is the maximum number allowed.

@ For higher-loops a different regularization scheme has been proposed
and, in principle, it can be used for computing multiloop amplitudes.
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@ At 1-loop, one has the following useful result

/ d0d[dw][dW][ds]e MO ESI G doy, Aoy oy Dog 102939495 (1 9)

= (>‘3)01062013Oé4045 fa1a2043044045(D’ 0)

where (A3)a;asas0405 1S totally antisymmetric in its indices. Explicitly,

(/\3)a1a2a3a4a5 = ()"Ym)al(>\7n)az(>\7p)a3(’ymnp)a4a5 (242)

@ We can now easily compute the 4-point 1-loop amplitude. Since one
needs to saturate 5 d, zero modes and each vertex operator contains
at most 1 d (through the term d, W?), the b-ghost must contribute
with 2 d's.

@ This term has the form
1

bp = ———(dy™Pd)(\ 243
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@ Therefore, one needs to compute
/ 4159 / [IN[dX][dr]e P (AR)"2(A) ey ™P DYAWWW (244)

e Using U(5) arguments or the result (242), one can show that the
covariant expression for the integrand looks like

(FrmnpD) [(AA)(M"’W)(M”W)(M"W) (245)

@ Using again U(5) arguments or 10D pure spinor identities plus
superspace equations of motion one can show that (up to an overall
coefficient)

K1 = (244) = (A1) (MY W2)(Ay"W3)F4 mn) (240)
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@ Analogously, one can use the non-minimal pure spinor prescription to
compute the 4-point 2-loop open string amplitude. The kinematic
factor is given by

Ky o< (AMY™PIN)F1 mnF2 pgF3 rs (A Wa)) (247)

@ Using superspace equations of motion and pure spinor identities, one
learns that (up to an overall constant)

Ka = s12((AAL) (A" W2) (A" W3)F4 mn) (248)

@ Therefore we have shown that the tree-level, 1-loop and 2-loop
kinematic factors for the 4-point function are proportional to each
other. This result is valid for bosons and fermions, and component

amplitudes can easily be extracted using the familiar pure spinor
measure (A\36°) = 1.
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Curved Backgrounds

@ Pure spinor superstrings can easily be coupled to curved backgrounds.
The requirements of nilpotency and holomorphicity of the BRST
charge impose conventional and dynamical constraints the
background must satisfy. Type IIA/IIB, Type I, N=1 SYM.

@ o/-corrections modify these constraints in such a way that the pure
spinor BRST charge keeps nilpotent at quantum level. Consistency
with the GS mechanism.

@ The fact one can couple pure spinor superstrings to curved
background allows us in principle to study string theory in AdSs x Ss
at quantum level, and so the pure spinor formalism is the most
promising framework to understand better/prove the AdS/CFT
conjecture.
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Pure Spinor Master Actions

@ Using the non-minimal formalism one can formulate a BV-like
framework for pure spinor superfields.

@ In this manner, pure spinor master actions have been constructed for
several theories including N=1 super-Yang-Mills, N=1 super
Born-Infeld (abelian and non-abelian), N=1 Supergravity, etc.

@ Although the interaction terms in these actions are complicated
functions of non-minimal variables, the pure spinor actions are
remarkably much simpler than the component ones.

@ It has been shown there exists a systematic procedure to extract
equations of motion in ordinary superspace from these master actions
in non-minimal pure spinor superspace.
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11D Pure Spinors

@ 11D pure spinors have been used to construct a pure spinor
supermembrane which reduces to the standard Type IIA pure spinor
superstring and the 11D pure spinor superparticle in the appropriate
limits.

@ The quantization of the 11D pure spinor superparticle describes the
BV version of 11D linearized supergravity.

@ In this framework, the 11D supergravity physical fields are located at
ghost number three.

@ A BRST-closed ghost number one vertex operator has been recently
constructed and a relation with the ghost number three vertex
operator has been proposed.

@ M-Theory conjecture: Scattering amplitudes of this 11D
supermembrane will contain non-perturbative information on
superstring theory.
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Other topics

Twistors.

Pure spinor chiral strings.
Pure spinor QFTs.
CY-compactifications.

Matrix theory.
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Summary
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@ The pure spinor formalism for superstrings produces compact
expressions in pure spinor superspace involving interactions of bosons
and fermions.

@ The non-minimal pure spinor formalism allows us to construct a
b-ghost satisfying the standard relation {Q, b} = T.

@ Using pure spinor identities and superspace equations of motion,
many scary-looking expressions can easily be manipulated and
calculated in pure spinor superspace.

@ The non-minimal formalism allows us to easily see (compared to the
other formalisms) how the kinematic factors for the 4-point function
at 0-, 1-, 2-loops are related to each other.

@ Pure spinors have many other interesting applications in addition to
the one we have seen in this minicourse. These include the study of
superstrings in AdS5 x S5, stringy corrections for superspace
constraints, QFT for maximally supersymmetric gauge theories,
M-Theory, etc.
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