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Lecture 1
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Particles

The action for the relativistic massive particle is given by

S = −M
∫

dτ

√
−ẊmẊm (1)

The momentum associated to Xm is easily computed to be

Pm =
∂L

∂Ẋm
= M

Ẋm√
−ẊmẊm

(2)

It satisfies the constraint

P2 + M2 = 0 (3)

Therefore one can write down (1) in its Hamiltonian form as

S =

∫
dτ

[
PmẊm − e

2
(P2 + M2)

]
(4)
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In this manner, a massless particle is described by

S =

∫
dτ

[
PmẊm − e

2
P2

]
(5)

To study the physical spectrum described by (5), one needs to fix the
reparametrization symmetry. After gauge-fixing e = 1, one finds

The gauge-fixed action:

S =

∫
dτ

[
PmẊm − 1

2
P2 + bċ

]
(6)

The BRST operator:

Q = cP2 (7)

Max Guillen Advanced Topics in Superstring Theory 03/03 5 / 104



As usual, physical states are defined as elements of the
BRST-cohomology:

HHilbert =
Ker(Q)

Im(Q)
(8)

A general wavefunction in a coordinate representation can be written
as

Φ(x , c) = φ(x) + cφ̃(x) (9)

The condition QΦ = 0 implies that

2φ = 0 (10)

And the condition δΦ = QΩ implies that

δφ̃ = 2w (11)

where Ω(x , c) is given by

Ω(x , c) = w(x) + cw̃(x) (12)

with w , w̃ being arbitrary gauge parameters.
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Using w one can remove the piece of φ̃(x) that does not satisfy
2φ̃ = 0. The Hilbert space is then described by φ, φ̃ satisfying

2φ = 0 , 2φ̃ = 0 (13)

where φ and φ̃ are ghost number one and zero fields, respectively.

We call the solution φ(x) a physical field solution, and φ̃(x) will be
called the antifield solution.
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Spinning Particles

The spinning particle action is defined by

S =

∫
dτ

[
PmẊm +

1

2
ψmψ̇

m − e

2
P2 + χP · ψ

]
(14)

Since we are interested in studying superstrings, we will assume
m = 0, 1, . . . , 9. In this manner, ψm is an SO(1, 9) fermionic vector.

After gauge-fixing e = 1, χ = 0, one is left with

S =

∫
dτ

[
PmẊm +

1

2
ψmψ̇

m − 1

2
P2 + bċ + βγ̇

]
(15)

and the BRST operator

Q = cP2 + γP · ψ − 1

2
bγ2 (16)
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Since {ψm, ψn} = ηmn, one needs to find a representation of the
Clifford algebra to define the ground state.

This can be done in two ways: Breaking SO(10) down to SU(5) and
defining a scalar ground state, or preserving 10D Lorentz covariance
and using a non-scalar ground state.

We choose to preserve Lorentz covariance, and so our ground state is
described by a 32-component spinor ΣA which behaves under the
action of ψm in the usual way

ψmΣA =
1√
2

(Γm)A
BΣB (17)

where (Γm)A
B is a 10D gamma matrix satisfying the standard Clifford

algebra.

A general wavefunction in a coordinate representation is then written
down as

ΦA(x , c , γ) = φA
0,0(x) + cφA

1,0(x) + γφA
0,1(x) + cγφA

1,1(x) + . . .

(18)
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Analogously, an arbitrary gauge parameter can be expanded as

ΩA(x , c , γ) = wA
0,0(x) + cwA

1,0(x) + γwA
0,1(x) + cγwA

1,1(x) + . . .

(19)

Physical states conditions then imply

c : 2φA
0,0 = 0

γ : /k
A

Bφ
B
0,0 = 0

cγ : − 1√
2
/k

A
Bφ

B
1,0 + 2φA

0,1 = 0

γ2 :
1√
2
/k

A
Bφ

B
0,1 −

1

2
φA

1,0 = 0

... (20)
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And the gauge transformations read

c : δφA
1,0 = 2wA

0,0

γ : δφA
0,1 =

1√
2
/k

A
Bw

B
0,0

cγ : δφA
1,1 = 2wA

0,1 −
1√
2
/k

A
Bw

B
1,0

γ2 : δφA
0,2 = −1

2
wA

1,0 +
1√
2

(/w0,1)A

... (21)

One can then show that the gauge transformations (21) imply that

P2φA = 0, /k
A

Bφ
B 6= 0 are the only requirements describing a

non-trivial cohomology. Hence, the Hilbert space is described by an
infinite set of spin- 1

2 fields: φA
0,0, φA

1,0, . . ..
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BV Description of Super-Yang-Mills

The BV or antifield formalism allows us to quantize systems
constrained with reducible or irreducible symmetries.

The basic idea is to add a ghost variable (cA) for each symmetry
present in the theory. The whole set of matter and ghost variables
will be denoted by ΦI = (φi , cA).

Next, one adds an antifield for each field in ΦI . The whole set of
antifields will be denoted by Φ∗I = (φ∗i , c

∗
A). Their ghost number

charges are related to each other by: gh(ΦI ) + gh(Φ∗I ) = -1.

These ingredients allow us introduce the so-called antibracket:

(A,B) =
δRA

δΦI

δLB

δΦ∗I
− δRA

δΦ∗I

δLB

δΦI
(22)

The master equation is then defined as

(S,S) = 0 (23)
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A solution to the master equation is called a master action.

Since the master action contains the original action, it is bosonic and
has ghost number zero. Therefore the master action satisfies

δLS
δΦI

δLS
δΦ∗I

= 0 (24)

To solve (24), one can expand S into a sum of terms with different
antifield number. Explicitly,

S = S0 + S1 + S2 + . . . (25)

where the subscript stands for the number of antifields present in Si .

Therefore, one has

δLS0

δΦI

δLS1

δΦ∗I
= 0 (26)

δLS0

δΦI

δLS2

δΦ∗I
+
δLS1

δΦI

δLS1

δΦ∗I
= 0 (27)

...
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For closed gauge algebras ([δα1 , δα2 ] = δα3), the only non-vanishing
terms are given by S0, S1. S0 is the original action, and S1 takes the
form

S1 = φ∗i R
i
A[φ]cA + c∗AfBC

AcBcC + b∗Ah
A (28)

where fBC
A are the structure constants of the gauge group, and

R i
A[φ] is the gauge transformations of the matter fields:

δφi = R i
A[φ]εA (29)

and εA is an infinitesimal gauge parameter.

We are now ready to apply this for our super-Yang-Mills action which
reads

S0 =

∫
d10xTr

[
− 1

4
FmnFmn +

i

2
(χγm∇mχ)

]
(30)
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Using the standard gauge transformations for the gluon and gluino
fields one can compute R i

A[φ]. Therefore,

Rac
m (y , x) = [−δac∂m + f abcAb

m(y)]δ(y − x) (31)

Rα ac(y , x) = f abcχα b(y)δ(y − x) (32)

where a, b, . . . are Lie algebra indices, and [T a,T b] = f abcT c .

Hence, the master action reads

S =

∫
d10x Tr

[
− 1

4
FmnFmn +

i

2
(χγm∇mχ) + ia∗m∇mc

−iχ∗α{c , χα} − ic∗cc

]
(33)
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The equation motion following from this action for the abelian case
read

∂mFmn = 0 , (γm)αβ∂mχ
β = 0 , ∂ma∗m = 0 , ∂mc = 0 (34)

The gauge transformations associated to the field and antifield
immediately follow from the master equation. Indeed, one can show
that

δσΦI = σK δ2S
δΦKδΦ∗I

δσΦ∗I = σK δ2S
δΦKδΦI

(35)

leave invariant the master action.
For instance, by choosing the direction of σK along ca, one finds (for
the abelian case)

δAm a = ∂mσ
a (36)

Similarly, one gets for the other fields

δλa
∗
m = 0 , δρχ

∗
α = (γm)αβ∂mρ

β , δεc∗ = ∂mεm (37)
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Strings

The string action is defined by

S = −
∫

dτdσ

[√
(Ẋ · X ′)2 − (Ẋ 2)(X ′)2

]
(38)

where we conveniently fix Ts = 1, and X ′m = ∂
∂σX

m.

The momentum associated to Xm is then found to be

Pm =
∂L

∂Ẋm
=

(X ′)2Ẋm − (Ẋ · X ′)X ′m√
(Ẋ · X ′)2 − (Ẋ )2(X ′)2

(39)

Therefore, the system is constrained by the relations

P · X ′ = 0 , P2 + (X ′)2 = 0 (40)

They can be equivalently rewritten as

(Pm ± X ′m)2 = 0 (41)
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Thus, the first-order form of the Nambu-Goto action is given by

S =

∫
dτdσ

[
2PmẊm +

e

2
(Pm + X ′m)(Pm + X ′m)

+
ē

2
(Pm − X ′m)(Pm − X ′m)

]
(42)

where e, ē are Lagrange multipliers enforcing the Virasoro constraints.

The gauge transformations generated by the Virasoro constraints read

δεX
m(σ) = [

∫
dσ′ε

1

2
(P + X ′)2(σ′),Xm(σ)] = −ε(P + X ′)m(σ)

δε̄X
m(σ) = [

∫
dσ′ε̄

1

2
(P − X ′)2(σ′),Xm(σ)] = −ε̄(P − X ′)m(σ)

δεPm(σ) = [

∫
dσ′ε

1

2
(P + X ′)2(σ′),Pm(σ)] = −∂σ(ε(P + X ′)m)(σ)

δε̄Pm(σ) = [

∫
dσ′ε̄

1

2
(P − X ′)2(σ′),Pm(σ)] = ∂σ(ε̄(P − X ′)m)(σ)

(43)
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One can also show that the Virasoro algebra is non-abelian since

[
1

2
(P ± X ′)2(σ),

1

2
(P ± X ′)2(σ′)] = ∓2∂σ′(δ(σ − σ′))(P ± X ′)m(σ)

(P ± X ′)m(σ′)

It is also not hard to show that the Virasoro constraints induce the
following transformations for the Lagrange multipliers

δεe = ε̇+ e∂σε− 2ε∂σe , δε̄ē = ˙̄ε− ē∂σ ε̄+ 2ε̄∂σ ē (44)

To quantize this model in a Lorentz covariant manner we choose
e = ē = −1, then

S =

∫
dτ

[
2PmẊm − X ′2 − P2 + b(ċ − c ′) + b̄( ˙̄c + c̄ ′)

]
(45)

In this manner, the BRST operator takes the form

Q =

∫
dσ

[
c

(P + X ′)2

2
+ c̄

(P − X ′)2

2
+ 2bcc ′ − 2b̄c̄ c̄ ′

]
(46)
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Using the e.o.m for Pm and introducing the conventional notation

∂z = ∂τ + ∂σ , ∂̄z̄ = ∂τ − ∂σ (47)

one is left with the usual bosonic closed string model

S =

∫
dzdz̄

[
∂Xm∂̄Xm + b∂̄c + b̄∂c̄

]
(48)

Q =

∫
dz(c

∂Xm∂Xm

2
+ bc∂c) +

∫
dz̄(c̄

∂̄Xm∂̄Xm

2
+ b̄c̄ ∂̄c̄)

(49)

For simplicity, we will focus on the open case which is described by

S =

∫
dzdz̄

[
∂Xm∂̄Xm + b∂̄c

]
(50)

Q =

∫
dz(c∂Xm∂Xm + bc∂c) (51)

As is well-known the target space dimension must be 26 in order for
the BRST operator to be nilpotent at quantum level.
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The physical spectrum is then found by using standard OPE
techniques or oscillator mode expansions. For simplicity we will use
the latter.

To this end, we should remember that after mapping the cylinder into
the complex plane through z = e−iw with w = σ + iτ , the worldsheet
fields can be written as

Xm(z , z̄) = xm
0 + pmlog |z |2 +

∑
k 6=0

am
k

k
(z−k + z̄−k ) (52)

b(z) =
∑

k

bk

zk+2
(53)

c(z) =
∑

k

ck

zk−1
(54)

As usual, the ground state is defined to be annihilated by all the
modes am

k , ci , bj with k > 0, i > 1, j > −2, respectively.
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The most general wavefunction then reads

Φ(x0, a
m
−1, a

m
−2 . . . , b−2, b−3, . . . , c1, c0, . . .)

=
∏
k,i ,j

aNa
−kb

Nb
−i c

Nc
j e ik.x0 |0 > (55)

The zero mode of the Virasoro constraint (L0) in the BRST-charge
then implies the familiar mass formula

k2 +
∞∑

n=1

n(Nbn + Ncn +
25∑

m=0

Na
m,n) = 0 (56)

After splitting the spectrum into diferent mass levels, one finds

k2 = −1 : c1e
ik.x0 |0 > (57)

k2 = 0 : e ik.x0 |0 > , c1a
m
−1e

ik.x0 |0 > , c0e
ik.x0 |0 > , c−1c1e

ik.x0 |0 > ,
c0c1a

m
−1e

ik.x0 |0 > , c0c−1c1e
ik.x0 |0 > (58)

k2 = 1 : b−2c1e
ik.x0 |0 > + . . . (59)

k2 = 2 : b−2e
ik.x0 |0 > + . . . (60)
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Since we will be interested in studying the scattering of masless
particles, let us restrict our study to the massless level of the string
spectrum.

The state-operator correspondence then dictates

Φk2=0(x , c) = C + c∂XmAm + ∂cB + c∂2cD

+c∂c∂XmÃm + c∂c∂2cC̃ (61)

The full BRST-cohomology condition requires that ∂mC = 0, and

∂mAm = B δAm = ∂mΛ 2Am = ∂mB δB = 2Λ

∂mÃm = 2D δÃm = 2Sm − ∂mφ δD = −φ+ ∂mSm δC̃ = ∂mΩm

(62)

These are exactly the fields, ghosts and their respective antifields of
the Batalin-Vilkovisky description of Yang-Mills (in 26D).
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Spinning Strings

The spinning string action is defined by

S =

∫
dτdσ

[
2PmẊm + ψmψ̇m + ψ̄m ˙̄ψm +

e

2

(
(P + X ′)2

+2ψmψ′m

)
+

ē

2

(
(P − X ′)2 − 2ψ̄mψ̄′m

)
+ χ[ψ · (P + X ′)]

+χ̄[ψ̄ · (P − X ′)]

]
(63)

The periodicity properties of the matter fermionic variables give rise
to the so-called (R) Ramond and (NS) Neveu-Schwarz sectors,
defined as

C.S : ψm(σ + 2π) = ψm(σ) R, ψm(σ + 2π) = −ψm(σ) NS

ψ̄m(σ + 2π) = ψ̄m(σ) R, ψ̄m(σ + 2π) = −ψ̄m(σ) NS

O.S : ψm(0) = ψ̄m(0) , ψm(π) = ψ̄m(π) R

ψm(0) = ψ̄m(0) , ψm(π) = −ψ̄m(π) NS
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As done before, we fix e = ē = −1, χ = χ̄ = 0. After solving the
e.o.m for Pm and introduce complex derivatives, one arrives at

S =

∫
d2z

[
∂Xm∂̄Xm + ψm∂̄ψm + ψ̄m∂ψ̄m

+b∂̄c + b̄∂c̄ + β∂̄γ + β̄∂γ̄

]
(64)

Using a similar procedure as the one discussed in the bosonic case,
the BRST operator for the spinning string is found to be

Q =

∫
dz

[
c(
∂X · ∂X + ψ · ∂ψ

2
) + γ(∂X · ψ) + bc∂c

+c(∂βγ − 3

2
∂(βγ)) + bγ2

]
+ c .c (65)
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Henceforth we will concentrate on the open string model.

As before, we will make a mode expansion to analyze the physical
content of the theory.

The modes for X , b, c were already studied. Therefore, the new
variables possess the following mode expansions:

ψm(z) =
∑
Z+ν

ψm
k

zk+ 1
2

(66)

β(z) =
∑
Z+ν

βk

zk+ 3
2

(67)

γ(z) =
∑
Z+ν

γk

zk− 1
2

(68)

where ν = 0, 1
2 if the boundary condition is R, NS respectively.

Then, the ground state will be different for each sector. For instance,
the NS ground state is required to be annihilated by ψm

k , βi , γj with
k > 0, i > −3

2 ,j > 1
2 . On the other hand, the R ground state is

annihilated by ψm
k , βi , γj with k > 0, i > −1 ,j > 1.
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To explicitly construct the ground states in both sectors one needs to
use bosonization techniques. For reasons of time, we will omit this
construction and just focus on the physical spectrum.

The L0 mode in the BRST-charge imposes again the mass formula for
each state in both sectors. For simplicity, let us just analyze the NS
sector.

The spectrum then reads

k2 = −1

2
: γ 1

2
|0 > , c1ψ

m
− 1

2
|0 > (69)

k2 = 0 : |0 > , c1a
m
−1|0 > , γ 1

2
ψm
− 1

2
|0 > , c0|0 > ,

c0c1a
m
−1|0 > , c0c−1c1|0 > , c0γ 1

2
γ− 1

2
|0 > , . . . (70)

...
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As before, one can write down the vertex operators for these states as

Φk2=− 1
2 (x , ψ, c , γ) = γφ+ c(ψ · k)φ (71)

Φk2=0(x , ψ, c , γ) = γψmAm(x) + c∂XmAm + cψmψnFmn +

ghosts + antifields (72)

With a little more effort the R sector can also be found.

In order to realize spacetime supersymmetry one needs to impose by
hand the so-called GSO projection. This operation removes the
tachyon and gives us a well-defined quantum mechanically theory.
However it makes life complicated when computing loop amplitudes
(sums over spin structures).

The resulting massless spectrum describes the Batalin-Vilkovisky
description of super-Yang-Mills (in 10D).
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Summary
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The quantization of the particle model is described by two scalars of
opposite statistics φ(x), φ̃(x) satisfying the massless KG e.o.m.

The quantization of the spinning particle is described by an infinite
set of spin- 1

2 fields satisfying the Weyl e.o.m.

The BV description of super-Yang-Mills is simple because of the
closure of the gauge algebra and it incorporates all the symmetries of
the theory through the introduction of ghosts and antifields to the
original model.

The bosonic string spectrum possesses a tachyon and it describes the
BV formulation of Yang-Mills in its massless level.

The superstring, i.e the spinning string after GSO projection, does not
have tachyons in its spectrum and it describes the BV formulation of
super-Yang-Mills in its massless level.
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Lecture 2
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10D Brink-Schwarz superparticle

The 10D Brink-Schwarz superparticle action is defined by

S =

∫
dτ

[
PmΠm − e

2
P2

]
(73)

where Πm = Ẋm + i(θγmθ̇).

In 10D, the spinor representation is 32-dimensional and reducible.
The two irrep. are 16-dimensional and they are called MW rep.
Depending on its eigenvalue under Γ11, spinors are classified as being
chiral (χα) or antichiral (χα).

The action (73) is invariant under worldline reparametrizations,
(global) SUSY transformations

δθα = εα , δXm = −i(εγmθ) , δPm = 0 , δe = 0 (74)

and the so-called (local) kappa symmetry

δθα = (γmκ)αPm , δXm = i(δθγmθ) , δPm = 0 , δe = −4i θ̇ακα(75)
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The momentum associated to the coordinate θα is found to be

pα =
∂L

∂θ̇α
= −i(γmθ)αPm (76)

Therefore we have a constrained system. The constraints read dα = 0
with

dα = pα + i(γmθ)αPm (77)

The algebra satisfied by these constraints takes the form

{dα, dβ} = −2(γm)αβPm (78)

One can show that the kappa symmetry transformations are
generated by Kα = −i(γmd)αPm, which satisfies the algebra

{Kα,Kβ} = 2(γm)αβPmP2 (79)
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Since P2 = 0, dα contains 8 first-class and 8 second-class constraints.

This can easily be seen by chossing a particular reference frame where
Pm = (P+, 0, . . . , 0). Then, using the 10D gamma matrices

(γ+)αβ =

(
0 0

0 −
√

2

)
, (γ−)αβ =

(
−
√

2 0
0 0

)
(80)

and the splitting of a 10D spinor into its SO(8) components, namely

χα =

(
χa

χȧ

)
(81)

where a, ȧ = 1, . . . , 8 are the Weyl and anti-Weyl spinor
representations of SO(8), the constraint algebra can be written as

{da, db} = −2
√

2δabP
+ , {da, dḃ} = 0 , {dȧ, dḃ} = 0 (82)

Then dȧ are first-class constraints and da are second-class constraints.

It turns out that there is no simple way to separate these constraints
out in a Lorentz covariant manner.

Max Guillen Advanced Topics in Superstring Theory 03/03 34 / 104



However, we can compute the physical spectrum in a simple way by
gauge-fixing the kappa symmetry.

In this manner, the semi-light cone gauge is defined by (γ+θ)α = 0.
A simple way of seeing how this gauge choice can always be
implemented is by choosing the reference frame Pm = (P+, 0, . . . , 0)
and performing a kappa transformation on θα:

θ′α = θα + δκθ
α = θα − (γ−κ)αP+ = θα +

1

2
(γ−γ+θ) (83)

where κ = − 1
2P+ (γ+θ)α. Then, one writes down

θα = −1

2
(γ+γ−θ)α − 1

2
(γ−γ+θ)α (84)

Putting all together we see that θ′α = −1
2 (γ+γ−θ) which satisfies

(γ+θ)α = 0 since (γ+)2 = 0.
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Then, the gauge-fixed BS action takes the form

S =

∫
dτ

[
PmẊm − i(θγ−θ̇)P+ − e

2
P2

]
(85)

One then defines the variables Sa: as Sa = 2
1
4 (P+)

1
2 (γ−θ)a, and

rewrites the action in the form

S =

∫
dτ

[
PmẊm +

i

2
SaṠa − e

2
P2

]
(86)

The momentum associated to Sa is then given by

pa =
∂L

∂Ṡa
= − i

2
Sa (87)

which defines the constraint

d̃a = pa +
i

2
Sa (88)

Using the standard Poisson brackets for pa and Sa one finds

{d̃a, d̃b} = δab (89)
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Using the usual Dirac procedure to quantize systems with second
class constraints, namely

{A,B}D = {A,B}P −
∑
e,f

{A, φe}PC
−1
ef {φ

f ,B}P (90)

where {φe , φf }P = C ef , we get in our case

{Sa, Sb}D = δab (91)

Using the triality property of SO(8), that is

(σi )aȧ(σj )bȧ + (σj )aȧ(σi )bȧ = 2δijδab

(σi )aȧ(σj )aḃ + (σj )aȧ(σi )aḃ = 2δijδȧḃ (92)

(σi )aȧ(σi )bḃ + (σi )aȧ(σi )bḃ = 2δabδȧḃ

one can show that the physical states realizing (91) are given by

Sa|ȧ >=
1√
2

(σi )aȧ|i > , Sa|i >=
1√
2

(σi )aȧ|ȧ > (93)

These are the light-cone gauge equations of motion of 10D
super-Maxwell.
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10D Green-Schwarz Superstrings

The 10D Green-Schwarz superstring action is given by

S =

∫
dτdσ

[
PmΠm

0 + Bflat
MN∂[0Z

M∂1]Z
N

+e(Pm + Πm
1 )(Pm + Π1 m) + ē(Pm − Πm

1 )(Pm − Π1 m)

]
(94)

where ZM = (Xm, θαL , θ
α̂
R), and

Πµ = ∂µX
m − i

2
(θLγ

m∂µθL)− i

2
(θRγ

m∂µθR) , µ = 1, 2. (95)

Also, e, ē are Lagrange multipliers enforcing their respective
constraints and Bflat

MN is the flat value of the type II supergravity
2-form superfield, that is

Bαm = i(γmθL)α , Bα̂m = −i(γmθR)α̂ , Bαβ̂ = (γmθL)α(γmθR)β̂ (96)
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Explicitly,

S =

∫
dτdσ

[
2PmΠm

0 + i∂1X
m

[
(θLγm∂0θL)− (θRγm∂0θR)

]
−i∂0X

m

[
(θLγm∂1θL)− (θRγm∂1θR)

]
+(θLγ

m∂0θL)(θRγm∂1θR)− (θLγ
m∂1θL)(θRγm∂0θR)

+
e

2
(Pm + Πm

1 )(Pm + Π1 m) +
ē

2
(Pm − Πm

1 )(Pm − Π1 m)

]
(97)

This action is invariant under the N = 2 SUSY transformations

δθαL = εαL , δθα̂R = εα̂R , δXm =
i

2
(εLγ

mθL) +
i

2
(εRγ

mθR) (98)

and δPm = δe = 0.

To prove this one needs to use the 10D gamma matrix identity
(γm)(αβ(γm)δ)ε = 0.
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This very same identity allows us to show that the GS superstring
action is invariant under the kappa transformations

δθαL = (γmκL)α(Pm − Π1 m) δθα̂R = (γmκR)α̂(Pm + Π1 m)

δXm = − i

2
(δθLγ

mθL)− i

2
(δθRγ

mθR) δe = 4iκL∂RθL

δPm = i(δθLγ
m∂1θL)− i(δθRγ

m∂1θR) δē = 4iκR∂LθR (99)

where ∂R = ∂0 − ē∂1, ∂L = ∂0 + e∂1.

Indeed one can show that the action transforms as

δS =

∫
dτdσ

[
− 2i(δθLγm∂RθL)(Pm − Πm

1 )

−2i(δθRγm∂LθR)(Pm + Πm
1 ) +

δe

2
(P + Π1)2 +

δē

2
(P − Π1)2

]
(100)

It is not hard to see that the transformations for the Lagrange
multipliers given in (99) will exactly cancel the first two terms.
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The momenta associated to the fermionic coordinates then read

pLα =
∂L

∂θ̇αL
= i(γmθL)αPm − Bflat

αN∂1Z
N (101)

pR α̂ =
∂R

∂θ̇α̂R
= i(γmθR)α̂Pm − Bflat

α̂N∂1Z
N (102)

Then, the system is constrained by

dLα = pL,α − i(γmθL)αPm + Bflat
αN∂1Z

N (103)

dR α̂ = pR,α̂ − i(γmθR)α̂Pm + Bflat
α̂N∂1Z

N (104)
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Explicitly, they read

dLα = pLα − i(γmθL)α(Pm − Π1 m) + (γmθL)α(θLγm∂1θL)

dR α̂ = pR α̂ − i(γmθR)α̂(Pm + Π1 m)− (γmθR)α̂(θRγm∂1θR)

(105)

A straightforward computation teaches us that

{dLα, dLβ} = −(Pm − Πm
1 )(γm)αβ

{dR α̂, dR β̂} = −(Pm + Πm
1 )(γm)α̂β̂

{dLα, dR α̂} = 0 (106)

Since (P ± Π1)2 = 0, we will have 16 first-class and 16 second-class
constraints. There is not simple way of separating them out in a
Lorentz covariant manner.

However, we can use the light-cone gauge to study the physical
spectrum.
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Let us first write down the action in conformal gauge e = ē = −1:

S =

∫
d2z

[
∂Xm∂̄Xm − i∂Xm(θLγm∂̄θL)− i ∂̄Xm(θRγm∂θR)

−1

2
(θLγ

m∂̄θL)

[
(θLγm∂θL) + (θRγm∂θR)

]
−1

2
(θRγ

m∂θR)

[
(θLγm∂̄θL) + (θRγm∂̄θR)

]]
(107)

Then, we use the residual symmetry + kappa transformations to fix
the light-cone gauge:

X+ = x+ + p+τ , (γ+θL)α = 0 , (γ+θR)α̂ = 0 (108)

In this gauge, all the quartic terms in θ in (107) vanish and we are
left with

S =

∫
d2z

[
∂X i ∂̄X i +

1

2
Sa

L ∂̄S
a
L +

1

2
S â

R∂S
â
R

]
(109)

where Sa
L = 2

3
4 i
√
ip+θa

L, S â
R = 2

3
4 i
√
ip+θâ

R .
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If the chiralities of the SO(8) spinors are the same (opposite), the
superstring is Type IIB (Type IIA).

After performing a Wick rotation and making a proper assignment of
conformal weights to the free variables in (109), one can expand in
modes as we did when we studied the spinning particle. Therefore,

∂X i (z) =
∑

n

ai
n

zn+1
, ∂̄X i (z̄) =

∑
n

āi
n

z̄n+1

Sa
L(z) =

∑
n

Sa
n

zn+ 1
2

, S â
R(z̄) =

∑
n

S̄ â
n

z̄n+ 1
2

(110)

It is not hard to see the modes will satisfy the following algebras:

[x i , pj ] = δij [ai
m, a

j
n] = mδijδm,−n

{Sa
m,S

b
n } = δabδm,−n {S̄ â

m, S̄
b̂
n } = δâb̂δm,−n (111)
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To compute the mass spectrum, one should first compute the
momentum density. Using the standard Noether procedure, one finds

Jm = i∂Xm + (θRγ
m∂θR) , J̄m = i ∂̄Xm + (θLγ

m∂̄θL)(112)

Using the standard definition for the momentum

pm =

∮
dzJm −

∮
dz̄J̄m (113)

one gets pi =
√

2αi
0, and

p− =
1

2p+

∑
n

[
ai
−na

i
n + āi

−nā
i
n + nSa

−nS
a
n + nS̄ â

−nS̄
â
n

]
(114)

Therefore, using that ai
0 = āi

0, the mass operator for the closed
superstring states takes the form

M2 = 2
∞∑

n=1

[
ai
−na

i
n + āi

−nā
i
n + nSa

−nS
a
n + nS̄ â

−nS̄
â
n

]
(115)
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Since the open superstring is only defined in the upper half-plane, the
mass operator for open superstring states is given by

M2 =
∞∑

n=1

[
ai
−na

i
n + nSa

−nS
a
n

]
(116)

The massless spectrum is then found from the algebra satisfied by the
fermionic zero modes. For the open superstring, this algebra is the
same as the one found in the superparticle model, therefore

Sa
0 |ȧ >=

1√
2

(σi )aȧ|i > , Sa
0 |i >=

1√
2

(σi )aȧ|ȧ > (117)

so the ground state of the GS open superstring describes 10D
super-Maxwell.

This vacuum will be denoted by |ȧj > or, equivalently, 8v ⊕ 8c .
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Spectrum of open superstrings

Mass States Bosons Fermions

M2 = 0 |ȧ, j > 8 8
M2 = 1 ai

−1|ȧj >, Sa
−1|ȧj > 128 128

M2 = 2 ai
−2|ȧj >, ai

−1a
k
−1|ȧj >,

Sa
−2|ȧj >, Sa

−1S
b
−1|ȧj >,

Sa
−1a

i
−1|ȧj >

1152 1152

Table 1: Spectrum of open superstrings.

The massless spectrum of closed superstrings depends on the type of
theory we are studying. They can easily be found from a tensor
product of two massless open superstring states:

Type IIB : (8v ⊕ 8c)⊗ (8v ⊕ 8c ) (118)

Type IIA : (8v ⊕ 8c)⊗ (8v ⊕ 8s) (119)
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Using standard group theory arguments, one can write (118)-(119) in
terms of SO(8) irrep.

Type IIB : (1⊕ 28⊕ 35⊕ 1⊕ 28⊕ 35)B ⊕ (8s ⊕ 8s ⊕ 56s ⊕ 56s)F

Type IIA : (1⊕ 28⊕ 35⊕ 8⊕ 56)B ⊕ (8s ⊕ 8c ⊕ 56s ⊕ 56c )F

(120)

Spectrum of Type IIB superstrings

Mass States Bosons Fermions

M2 = 0 φ0 ⊗ φ̃0 128 128

M2 = 4 ai
−1φ0 ⊗ āj

−1φ̃0,

Sa
−1φ0 ⊗ S̄b

−1φ̃0 ,

ai
−1φ0 ⊗ S̄a

−1φ̃0,

Sa
−1φ0 ⊗ āj

−1φ̃0

32728 32728

M2 = 8 ai
−2φ0⊗āj

−1φ̃0, . . . 2654208 2654208

Table 2: Spectrum of Type IIB superstrings.
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The light-cone gauge is preserved by the supersymmetry
transformations:

δSa
L =

√
2p+ηa

L, δSa
L = i

√
1

p+
∂X i (σi )aȧεL ȧ

δS â
R =

√
2p+ηâ

R , δS â
R = i

√
1

p+
∂̄X i (σi )aȧεR,ȧ

δX i = 0, δX i = −i

√
1

p+
(SLσ

iεL)− i

√
1

p+
(SRσ

iεR)

(121)

which are nothing but a combination of the original supersymmetry
and kappa transformations.
In addition, the light-cone gauge can be broken by a Lorentz
transformation since

δθα =
1

2
[
1

2
εij (γ

ij )αβ + ε−j (γ
−j )αβ + ε+j (γ

+j )αβ + ε+−(γ+−)αβ]θβ

and (γ+γ−jθ) 6= 0.
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However, it is always possible to perform a kappa transformation such
that the light-cone gauge is respected.

This implies one should redefine the Lorentz generator J−i so that the
modified Lorentz transformation acts on Sa

L as

δSa
L = −1

2
ε+−S

a
L +

1

2
εi−

∂X i

∂X+
Sa

L −
1

2
εi−

∂X j

∂X+
(σj )aȧ(σi )ȧbS

b
L

(122)

One can now compute the light-cone gauge Lorentz generators, using
the standard Noether procedure. The result is

Mmn(z) = 2i(X [m∂X n]) + 2X [m(θRγ
n]∂θR)− 1

2
∂X p(θLγpγ

mnθL)

+
i

4
(θLγ

p∂θL)(θLγpγ
mnθL) +

i

4
(θRγ

p∂θR)(θRγpγ
mnθR)

+
i

2
(θRγ

p∂θR)(θLγpγ
mnθL) (123)

and similarly for M̄mn(z̄).
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The Lorentz charges are then computed to be

Jmn = x [mpn] − i

2

∞∑
k=1

(αm
−kα

n
k − αn

−kα
m
k ) + Nmn

F (124)

The only non-zero contribution of Nmn
F comes from

N ij
F = − i

4

∑
k

(S−kσ
ijSk ) (125)

Therefore, the N i−
F piece of the modified Lorentz transformation

preserving the light-cone gauge (122) is a pure kappa transformation.

One can check that the charge generating the transformation (122)
takes the form

N i− =
1

8

∮
∂X i

∂X+
(SσijS) (126)

All these ingredients allow us to show that [J i−, J j−] = 0 if and only
if D = 10.
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Summary
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The 10D BS superparticle exhibits manifest supersymmetry and hides
a local fermionic symmetry called (Siegel) kappa symmetry.

The nature of its constraints (first- and second-class) does not allow
us to separate them out in a simple way respecting Lorentz
covariance.

The superparticle spectrum is easily calculated in light-cone gauge and
it describes the physical degrees of freedom of 10D super-Maxwell.

The GS superstring can have at most N = 2 supersymmetries and it
can be constructed in D = 3, 4, 6, 10 dimensions.

The nature of its constraints does not allow us to quantize it in a
Lorentz covariant manner. Light-cone gauge analysis is simple, and
the physical spectrum is easily obtained and shown to be
supersymmetric.

To preserve the Lorentz algebra at quantum level, the spacetime
dimension must be 10.
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Lecture 3
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10D Super-Yang-Mills in Superspace

As we saw before, the (N=1) 10D superspace is described by the
coordinates Xm, θα.

Using these coordinates, one can define the operators

Qα = ∂α − i(γmθ)α∂m (127)

which realize the SUSY algebra {Qα,Qβ} = −2i(γm)αβ∂m.

The supersymmetric derivatives can then be introduced as

Dα = ∂α + i(γmθ)α∂m (128)

and satisfy {Dα,Dβ} = 2i(γm)αβ∂m,{Dα,Qβ} = 0.

These objects can be written in a more compact notation by
introducing the so-called (super)vielbein fields EA

M , EM
A satisfying

EA
MEM

B = δB
A , EA

NEM
A = δN

M . Then,

DA = EA
M∂M (129)

where ∂M = (∂m, ∂α).
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We then define the 1-form basis

EA = dZMEM
A (130)

which will allow us to implement SUSY transformations as coordinate
transformations in superspace.

Explicitly, the matrix EM
A takes the form

EM
A =

(
δm

n 0

−i(γmθ)α δβα

)
(131)

We can now introduce a 1-form (super)connection and define

∇ = d + A (132)

where A is Lie-algebra valued.

The (super)field-strength is then defined in the usual way

F = dA + A ∧ A (133)
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It is not hard to see that F must satisfy the super-Bianchi identities

∇F = 0 (134)

Explicitly, the 2-form superfield F can be written as follows

F =
1

2
EBEAFAB = d(EBAB) + EBEAAAAB (135)

which implies

FAB = 2D[AAB} + 2AAAB + TAB
CAC (136)

where TA = dEA is the so-called (super)torsion.

Using eqn. (131) one can show that the only non-zero component of
TA is given by Tαβ

m = −2i(γm)αβ.
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Therefore, one has

Fαβ = DαAβ + DβAα + {Aα,Aβ} − 2i(γm)αβAm (137)

Fmα = ∂mAα − DαAm + [Am,Aα] (138)

Fmn = ∂mAn − ∂nAm + [Am,An] (139)

Or, equivalently

Fαβ = {∇α,∇β} − 2i(γm)αβ∇m (140)

Fmα = [∇m,∇α] (141)

Fmn = [∇m,∇n] (142)

Using similar manipulations, the Bianchi identities in component form
read

∇[AFBC} + T[AB
DF|D|C} = 0 (143)
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Explicitly,

∇(αFβδ) + 2i(γm)(αβFδ)m = 0 (144)

∇mFαβ + 2∇(αFβ)m − 2i(γn)αβFnm = 0 (145)

2∇[mFn]α +∇αFmn = 0 (146)

∇[mFnp] = 0 (147)

To solve these identities, one needs to impose constraints.

Conventional constraint:

(γm)αβFαβ = 0 (148)

This constraint kills one spin- 1
2 field present in the spectrum. Indeed,

one has

Fαβ = (γm)αβFm + (γmnpqr )αβFmnpqr

Fmα = F̃mα + (γm)αβWβ (149)

where F̃mα is γ-traceless, and

Fm = f
(0)

m + θαf
(1)

mα + . . . (150)
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Using the same decomposition for f
(1)

mα , one finds it contains a spin- 1
2

field λα of the same mass dimension as χα ( 3
2 ), the zeroth

θ-component of Wα. Therefore, eqn. (148) reduces the number of
spin- 1

2 fermions to one.

Notice that this constraint can always be satisfied by performing a
field redefinition, namely AA = (Aα,Am − i

32 (γm)αβFαβ).

Dynamical constraint:

(γmnpqr )αβFαβ = 0 (151)

This is the constraint which puts the theory on-shell.

All in all, 10D SYM is described by setting

Fαβ = 0 (152)

The Bianchi identities can then be cast as
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(γm)(αβFδ)m = 0 (153)

∇(αFβ)m + i(γn)αβFmn = 0 (154)

2∇[mFn]α +∇αFmn = 0 (155)

∇[mFnp] = 0 (156)

Eqn. (153) sets F̃mα = 0, and so

Fmα = (γm)αβWβ (157)

Eqn. (154) will provide a relation between Wα, Fmn. Indeed, the
1-form and 5-form components of (154) must vanish, and so

1-form → C = 0 , Fmn = 2iCmn

5-form → Cmnpq = 0 (158)

where

∇αWβ = δβαC + (γmn)α
βCmn + (γmnpq)α

βCmnpq (159)
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Therefore,

∇αWβ = − i

2
(γmn)α

βFmn (160)

This equation implies that the (n+1)-th θ term in Wα is related to
the n-th θ term in Fmn.

In addition, eqn. (155) can be used to demonstrate that no new fields
will appear in the θ-expansion of Wα.

Finally, eqn. (156) is just the usual Bianchi identity. Therefore we
have the right field content of 10D SYM.

The equations of motion immediately follow from (155), (160) and
the dynamical constraint {∇α,∇β} = 2i(γm)αβ∇m. Explicitly,

(γm)αβ∇mWβ = 0 (161)

∇mFmn =
i

2
γn
αβ{Wα,Wβ} (162)
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In a very similar way, one can describe 10D SYM by using the gauge
field AA and its gauge transformation. After removing spurious terms,
the gauge potential possesses the following θ-expansion

Aα = i(γmθ)αam −
1

36
(θγmnpθ)(γmnpχ)α + . . . (163)

Am = am + i(θγmχ) + . . . (164)

where δam = ∂mλ+ [λ, am].

One can check that coordinate transformations on superfields indeed
induce SUSY transformations. For instance,

δQWα = εβQβ(Wα) (165)

After expanding in components, one finds

δχα = − i

2
(εγmn)αFmn (166)

as desired.
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In order to make contact with what we discussed in the BS
superparticle context, let us write down the abelian version of the
dynamical constraint we just studied:

DαAβ + DβAα = 2i(γm)αβAm (167)

In light-cone gauge these equations reduce to the equations satisfied
by physical spectrum of the BS superparticle. For simplicity, let us
assume the only non-zero component of the momentum is k+. One
then has A− = 0. Therefore,

DaAb + DbAa = −2
√

2iδabA+ (168)

DaAḃ + DḃAa = 2i(σi )aḃAi (169)

DȧAḃ + DḃAȧ = 0 (170)

Using the algebra,

{Da,Db} = −2
√

2iδabk
+ , {Da,Dḃ} = 0 , {Dȧ,Dḃ} = 0 (171)

one learns that the component Aa is pure gauge (δAα = DαΛ).
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In this way, one is left with

DaAȧ = 2i(σi )ȧaAi (172)

and Aḃ(θa).

Similarly, one can use the e.o.m Fmα = (γmW)α to show that

DaAi = −
√

2

2
k+(σi )aȧAȧ (173)

Up to numerical coefficients, these are the equations of motion we
found in the BS superparticle spectrum.
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10D Pure Spinor Superparticles

Let us take the gauge-fixed BS superparticle action

S =

∫
dτ

[
PmẊm +

i

2
SaṠa − e

2
P2

]
(174)

and add a new couple of conjugate fermionic variables (θα, pβ).

In order to recover the original theory, one needs to add a fermionic
symmetry that allows us to remove the new degrees of freedom
introduced. This fermionic symmetry will be generated by

d̂α = dα +
1

2
1
4

√
P+

(γmγ+S)αPm (175)

where dα = pα + i(γmθ)αPm. This constraint is first-class since

{d̂α, d̂β} = − 1

P+
(γ+)αβP

2 (176)
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Therefore the action can be rewritten as

S =

∫
dτ

[
PmẊm +

i

2
SaṠa − e

2
P2 + pαθ̇

α + f αd̂α

]
(177)

After gauge-fixing e = 1, f α = 0, the BRST operator is given by

Q̂ = cP2 + λ̂αd̂α −
1

2P+
(λ̂γ+λ̂)b (178)

We will now show the BRST-cohomology of Q̂ is equivalent to the
BRST-cohomology of Q = λαdα with λα being a pure spinor
satisfying λγmλ = 0.

To prove this, we first show that the Q̂-cohomology is equivalent to
the Q ′-cohomology, where Q ′ = λ′αd̂α and λ′γ+λ′ = 0. Then, it will
be demonstrated that the Q ′-cohomology is equivalent to the
Q-cohomology.
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The first equivalence follows from the following argument: Define
Q0 = λα0 d̂α. Then Q2

0 = − 1
2P+ (λ0γ

+λ0)P2.

Let V be a state such that Q0V = (λ0γ
+λ0)W . Therefore,

Q0W = − 1
2P+P2V .

Then, the state V̂ = V − 2cP+W is annihilated by Q̂. In this
manner, if a state V is BRST-closed under Q ′, there is always a state
V̂ which is BRST-closed under Q̂.

Now let us assume that there is a state V satisfying
V = Q0Ω + (λ0γ

+λ0)Y , for some Y .

One can then show that Q̂(Ω + 2P+cY ) = V̂ , where
V̂ = V − 2cP+W . Thus, if there is a state V which is BRST-exact
under Q ′, there is always a state V̂ which is BRST-exact under Q̂.

One can easily reverse the arguments and the first equivalence is
proved.
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The constraint (λ′γ+λ′) = 0 implies that (γ+λ′)ȧ is an SO(8) null
spinor. Therefore it is left invariant under an SU(4) subgroup. Under
this SU(4) subgroup, the chiral spinors (γ−λ′)a, (γ+d)a, Sa split into
the 4, 4̄ representations as follows

(γ−λ′)a =

(
(γ−λ′)A, (γ

−λ′)Ā

)
(γ+d)a =

(
(γ+d)A, (γ

−d)Ā

)
Sa =

(
SA, SĀ

)
(179)

where A, Ā = 1, . . . , 4.

After performing the shift

SA → SA −
i

4 · 2
1
4

√
P+

(γ+d)A (180)

the BRST operator will change by a similarity transformation.
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Explicitly,

Q ′ → e−iSQ ′e iS = Q ′ + i [Q,S ] +
1

2
[[Q,S ],S ] + . . . (181)

where S = KSĀ(γ+d)A, and K = − i

4·2
1
4
√

P+
.

Then, the first commutator is computed to be (assume only P+ 6= 0):

[Q ′,SĀdA] = −λ′αSĀ{dα, dA}+

√
P+

2
1
4

λ′a{Sa,SĀ}dA (182)

To evaluate this expression we split dα, Sa into their SU(4)
components as follows

SA =
1√
2

(S2a + iS2a+1) SĀ =
1√
2

(S2a − iS2a+1)

dA =
1√
2

(d2a + id2a+1) dĀ =
1√
2

(d2a − id2a+1)

(183)

It is not hard to see these variables satisfy the algebra

{SA,SĀ} = 2ηAĀ , {dA, dĀ} = −4
√

2ηAĀP
+ (184)
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Hence,

−iK
√

2[Q ′,SAdĀ] = −
√

2
√

2P+λ′ASĀ − λ
′
Ā
dA (185)

Notice that this implies [[Q ′, S ], S ] = 0, and so all the other
contributions in the BCH formula vanish.

Then, we are left with

Q ′ → Q ′ − iK
√

2[Q ′, SAdĀ]

→ λ′ȧdȧ + λ′AdĀ +

√
2
√

2P+λ′ASĀ (186)

where λ′ȧ is null. If we define λα = (λ′ȧ, λ′A, 0), one can write

Q ′ → λαdα +

√
2
√

2P+λ′ASĀ (187)

Next, we use the so-called quartet argument which states that the
cohomology of a BRST operator q is the same as the cohomology of
a BRST operator q′ = q + cb, where (a, b) and (c , d) are bosonic and
fermionic conjugate variables, respectively.
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Using this result, one learns that

Q ′ → Q = λαdα (188)

where λα is a pure spinor satisfying λγmλ = 0, and the action takes
the form

S =

∫
dτ

[
PmẊm + pαθ̇

α + wαλ̇
α − 1

2
P2

]
(189)

In this manner, we have shown that the pure spinor superparticle
defined by (189), (188) is physically equivalent to the semi-light-cone
10D BS superparticle.

In this pure spinor framework, the problem of covariant quantization
is translated into a cohomological problem.
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To find the physical spectrum, we write down the wavefunction in a
coordinate representation as

Ψ(x , θ, λ) = Ψ0(x , θ) + Ψ1(x , θ, λ) + . . . (190)

where the subscript indicates the polynomial degree in λ.

Let us focus on the ghost number one sector, that is
Ψ1(x , θ, λ) = λαVα(x , θ).

The physical state conditions then require

QΨ1 = 0 → λαλβDαVβ = 0

→ (γmnpqr )αβDαVβ = 0 (191)

and also,

δΨ1 = QΩ → δVα = DαΩ (192)

for some arbitrary parameter Ω.

Eqn. (191) is nothing but the dynamical constraint studied in the
previous section, and eqn. (192) is the usual gauge transformation for
the fermionic gauge potential.
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Therefore we identify

Vα(x , θ) = Aα(x , θ) (193)

In this manner the 10D pure spinor superparticle describes 10D
super-Maxwell in a manifestly supersymmetric way through the ghost
number one state

Ψ1(x , θ, λ) = λαAα(x , θ) (194)

One can use the gauge transformation (192) to fix the HS gauge:
θαAα = 0, in which Aα look like

Aα(x , θ) =
1

2
(θγm)αAm −

1

3
(θγm)α(χγmθ)

− 1

32
(θγp)α(θγmnpθ)Fmn +

1

60
(θγm)α(θγmnpθ)(∂nχγpθ)

+
1

1152
(γmθ)α(θγmrsθ)(θγs

pqθ)∂rFpq + . . . (195)
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It turns out that one also finds non-trivial cohomology at ghost
numbers 0, 2 and 3.

The ghost number 0 sector will describe a constant which can be
identified as the ghost field of the BV description of 10D
super-Maxwell.

The ghost number 2 sector will describe the antifields of 10D
super-Maxwell through the superfield Aαβ = (γmnpqr )αβAmnpqr

satisfying

λα(λγmnpqrλ)DαAmnpqr = 0

δAmnpqr = Dγmnpqr Λ (196)

where Λα is an arbitrary gauge parameter.

The ghost number 3 sector describes a scalar through the structure

(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)c∗ (197)

which is identified with the ghost antifield.

Max Guillen Advanced Topics in Superstring Theory 03/03 75 / 104



Therefore, the 10D pure spinor superparticle describes 10D
super-Maxwell in a manifestly super-Poincaré covariant way, in its BV
description.

The λ3θ5 structure will play an important role when computing
amplitudes. It can be seen as the pure spinor analogue of the scalar
c∂c∂2c in RNS.

Then, 10D super-Yang-Mills can be described by generalizing our
previous construction as

S = Tr

∫
d10x〈1

2
ΨQΨ +

1

3
ΨΨΨ〉 (198)

where 〈λ3θ5〉 = 1.

Indeed, the equations of motion and gauge transformations following
from (198) read

QΨ + gΨΨ = 0 , δΨ = QΛ + [Ψ,Λ] (199)

which coincide with the physical conditions studied previously.
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10D Pure Spinor Superstrings

Using similar arguments as the ones given in the superparticle
context, the Type II pure spinor superstring is defined by the action

S =

∫
d2z

[
∂Xm∂̄X

m + pα∂̄θ
α + wα∂̄λ

α + p̄α̂∂θ̄
α̂ + w̄α̂∂λ̄

α̂

]
(200)

and the BRST operator

Q =

∫
dzλαdα +

∫
dz̄ λ̄α̂d̄α̂ (201)

Notice that the central charge vanishes. Indeed

c = 10− 2× 16 + 2× 11 = 0 (202)

Furthermore, the ghost Lorentz current satisfies the Kac-Moody
algebra

Nmn(z)Npq(w) =
6ηm[pηq]n

(z − w)2
+

2ηm[pNq]n − 2ηn[pNq]m

z − w
(203)
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Remarkably, this is exactly the contribution required in
Nmn

p,θ = 1
2 (pγmnθ) to reproduce the same Kac-Moody algebra

generated by the RNS current ψmψn.

The massless physical spectrum is then easily found at ghost number
(1,1) as

V = λαλ̄α̂Aαα̂ (204)

where Aαα̂ satisfies the equations of motion

(γmnpqr )αβDαAβα̂ = (γmnpqr )α̂β̂Dα̂Aαβ̂ = 0 (205)

And gauge transformations

δAαα̂ = DαΩα̂ + Dα̂Ωα,

(γmnpqr )αβDαΩβ = (γmnpqr )α̂β̂Dα̂Ωβ̂ = 0 (206)

These are nothing but the Type II supergravity equations of motion
and gauge transformations in superspace.
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A simple way of seeing the operator V correctly describes the Type II
supergravity degrees of freedom is by expressing Aαα̂ = AαAα̂, where
the spinor superfields are the same as the ones studied in the pure
spinor quantization of the superparticle. Therefore, the superfield
Aαα̂ will contain the tensor product of the states in each spinor
superfield, that is the NS-NS, NS-R, R-NS, R-R states.

A similar analysis can be done for the hetetoric pure spinor supertring
to conclude that N = 1 Super-Yang-Mills and N = 1 Supergravity are
the massless states in the pure spinor BRST-cohomology.
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Summary
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10D super-Yang Mills can be described in superspace after imposing
conventional and dynamical (or physical) constraints.

The light-cone version of these superspace equations of motion
coincides with the equations found in the light-cone quantization of
the 10D BS superparticle.

The 10D BS superparticle in semi-light-cone gauge can be shown to
have the same BRST-cohomology as the pure spinor superparticle,
and so they both are physically equivalent to each other.

The pure spinor superparticle describes 10D super-Maxwell in its BV
version in a manifestly super-Poincaré covariant way.

10D super-Yang-Mills can be described in the pure spinor framework
by a Chern-Simons-like action.

The pure spinor superstring possesses a vanishing central charge and
its quantization provides a manifestly supersymmetric description of
the several string states. In particular, the massless levels of the pure
spinor superstring describe Type II, Type I supergravity and 10D
super-Yang-Mills in 10D superspace.
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Lecture 4
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Pure Spinor Superstring Scattering Amplitudes

In the RNS formalism of open superstrings, the ghost number one
state (at picture number zero) reads

V (−1) = ce−φψmAme ik·X (207)

As seen before, this operator describes the gluonic state. It turns out
that one can define an integrated vertex operator

∫
dz U(z) such that

U = {b,V } (208)

or, explicitly

U(−1) = e−φψmAme ik·X (209)

Using that {Q, b} = T and the standard Jacobi identity, it is easy to
see that

{Q,U} = ∂V (210)
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After bosonization (or fermionization), one can define the so-called
picture charge. This quantum number is then used to write down
vertex operators in different ways.
At tree-level, one needs to saturate the 2 zero modes associated to
the superconformal ghost γ, and so one can choose to have 2 picture
number -1 vertex operators and N-2 picture number 0 vertex
operators in the N-point correlator.
The picture number 0 vertex operator for the gluonic state reads

V (0) = c(∂XmAm +
1

2
ψmψnFmn)e ik·X (211)

and its corresponding integrated version takes the form

U(0) = (∂XmAm +
1

2
ψmψnFmn)e ik·X (212)

The N-point gluonic amplitude is then given by

A(1, . . . ,N) = 〈V (−1)
1 (0)V

(−1)
2 (1)

∫
dz3U

(0)
3 (z3) . . .∫

dzN−1U
(0)
N−1(zN−1)V

(0)
N (∞)〉 (213)
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In the pure spinor formalism, we have seen that the unintegrated
vertex operator in the massless sector is described by

V = λαAα (214)

One can then use the relation {Q,U} = ∂V to define an integrated
vertex operator. Explicitly,

U = ∂θαAα + ΠmAm + dαWα +
1

2
NmnFmn (215)

The prescription to compute scattering amplitudes is then proposed
to be

A(1, . . . ,N) = 〈V1(0)V2(1)

∫
dz3U3(z3) . . .∫

dzN−1UN−1(zN−1)VN(∞)〉 (216)

where 〈λ3θ5〉 = 1.

It turns out that this prescription is supersymmetric and decouples
spurious (BRST-exact) states from the physical amplitudes.
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Let us see some explicit examples. The 3-point function is given by

A(1, 2, 3) = 〈V1(z1)V2(z2)V3(z3)〉+ (2↔ 3) (217)

Due to momentum conservation, there is not KN factor. To get the
3-gluon amplitude we can use the following distribution table

A1α(θ) A2α(θ) A3α(θ)

1 1 3
1 3 1
3 1 1

One then finds (up to normalization factors)

A(1B , 2B , 3B) =

[
km

3 A1 rA2 sA3 n − km
2 A1 rA2 nA3 s + km

1 A1 nA2 rA3 s

]
·〈(λγrθ)(λγsθ)(λγpθ)(θγpmnθ)〉
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After using the identity

〈(λγmθ)(λγnθ)(λγpθ)(θγqrsθ)〉 =
1

120
δmnp

qrs (218)

one obtains

A(1B , 2B , 3B) =

[
(A1 · A2)(A3 · k2) + (A1 · A3)(A2 · k1)

+(A2 · A3)(A1 · k3)

]
(219)

The final result must be dressed with the standard Chan-Paton
factors.

In a similar manner, one can get the 2-gluino 1-gluon amplitude from
the following theta distribution

A1α(θ) A2α(θ) A3α(θ)

1 2 2
2 1 2
2 2 1
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The result can be cast as

A1B ,2F ,3F
= A1 n(χ2γ

rχ3)〈(λγnθ)(λγmθ)(λγpθ)(θγmrpθ)〉
= A1 m(χ2γ

mχ3) (220)

Analogously, one can compute the 4-point function for closed string
strates as follows

A(1, 2, 3, 4) = 〈V1(z1, z̄1)V2(z2, z̄2)V3(z3, z̄3)

∫
C
d2z4U(z4, z̄4)〉

(221)

where V (z , z̄) = V (z)V̄ (z̄), U(z , z̄) = U(z)Ū(z).

One can use SL(2,C) invariance to fix z1 = 0, z2 = 1, z3 =∞.

The relevant OPEs to be carried out involve the exponentials with Πm

(and Π̄m) and the terms proportional to dα and Nmn in U (and Ū)
since,

Nmn(z)λα(w)→ α′

4

(λγmn)α

z − w
, Dα(z)V(w)→ −α

′

2

DαV
z − w

(222)
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Then, one finds

A(1, 2, 3, 4) = (
α′

2
)2

∫
d2z4

(
F12

z4
+

F21

1− z4

)(
F̄12

z̄4
+

F̄21

1− z̄4

)
·|z4|−

1
2
α′t |1− z4|−

1
2
α′u (223)

where

F12 = ikm
1 〈(λA1)(λA2)(λA3)A4 m〉+ 〈A1 m(λA2)(λA3)(λγmW4)〉

(224)

and F21 can be obtained from F12 after exchanging 1↔ 2.

Using standard identities of Γ-functions, this amplitude can be written
in the compact way

A(1, 2, 3, 4) = K0K̄0
Γ(−α′t

4 )Γ(−α′s
4 )Γ(−α′u

4 )

Γ(1 + α′t
4 )Γ(1 + α′s

4 )Γ(1 + α′u
4 )

(225)

where K0 = 1
2 (uF12 + tF21).
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Explicitly,

K0 = 〈(∂mA1 n)(λA2)∂m(λA3)(λγnW4)〉

−1

2
〈∂m(λA1)∂n(λA2)(λA3)F4 mn〉+ (1↔ 2) (226)

After using superspace equations of motion and ignore BRST-exact
contributions, this object can also be written as

K0 = −〈(λA1)(λγmW2)(λγnW3)F4 mn〉 (227)

This expression encodes the kinematic factors for any scattering
amplitude of 4 SYM physical states (gluons or gluinos). It can be
shown the bosonic sector of this correlator reproduces the standard
t8-tensor contracted with the four field-strengths.
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Non-minimal Pure Spinor Formalism

Using the standard quartet argument, one can introduce two pairs of
conjugate variables (λ̄α, w̄

β), (rα, s
β), where λ̄α is a pure spinor and

rα satisfies λ̄γmr = 0, through the modification

Q =

∫
dz

[
λαdα + rαw̄

α

]
(228)

so that the BRST-cohomology does not change.
The action for the non-minimal pure spinor open superstring then
looks like

S =

∫
d2z

[
∂Xm∂̄Xm + pα∂̄θ

α + wα∂̄λ
α + w̄α∂̄λ̄α + sα∂̄rα

]
(229)

The tree-level scattering amplitude prescription is given by

A = 〈NV1(z1)V2(z2)V3(z3)

∫
dz3U3(z3) . . .

∫
dzNUN(zN)〉

(230)
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Explicitly,

A =

∫
[dλ][d λ̄][dr ]d16θNλαλβλδfαβδ(θ) (231)

where,

[dλ]λαλβλγ = ερ1...ρ11κ1...κ5T (αβδ)[κ1...κ5]dλρ1 . . . dλρ11 (232)[
d λ̄
]
λ̄αλ̄βλ̄γ = ερ1...ρ11κ1...κ5T(αβδ)[κ1...κ5]d λ̄ρ1 . . . d λ̄ρ11 (233)

[dr ] = εα1...α11κ1...κ5T (αβγ)[κ1...κ5]λ̄αλ̄βλ̄γ∂
α1
r . . . ∂α11

r

(234)

and,

N = e{Q,−(λ̄θ)} = e−λλ̄−rθ (235)

This non-minimal prescription is easily shown to be equivalent to the
minimal one studied in the previous section.
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Multiloop Prescription

Using the non-minimal formalism, one can construct a b-ghost
satisfying {Q, b} = T . It takes the form

b = sα∂λ̄α +
1

4(λλ̄)

[
2Πm(λ̄γmd)− Nmn(λ̄γmn∂θ)− Jλ(λ̄∂θ)

−λ̄∂2θ

]
+

(λ̄γmnpr)

192(λλ̄)2

[
(dγmnpd) + 24NmnΠp

]
−(rγmnpr)

16(λλ̄)3
(λ̄γmd)Nnp +

(rγmnpr)

128(λλ̄)4
(λ̄γp

qr r)NmnNqr (236)

Using this b-ghost a g-loop amplitude prescription is formulated as

A = d3g−3τ〈N (y)

3g−3∏
i=1

(

∫
dwiµi (wj )b(wj ))

N∏
j=1

∫
dzjU(zj )〉

(237)
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A conformal weight 1 field Φ(z) can be written in a g genus surface as

Φ(z) = Φ̂(z) +

g∑
I =1

ΦI ΩI (238)

where Φ̂(z) have no zero modes and obeys
∫

aI
Φ̂ = 0, and ΩI are the

g holomorphic 1-forms satisfying
∫

aI
ΩJ = δIJ .

One then needs to integrate out the g zero modes corresponding to
wα, w̄α, sα, dα. For such a purpose, one uses the measures[

dw I
]

= (λγm)κ1(λγn)κ2(λγp)κ3(γmnp)κ4κ5ε
κ1...κ5ρ1...ρ11

·dw I
1 . . . dw

I
11[

dw̄ I
]

= (λ̄γm)κ1(λ̄γn)κ2(λ̄γp)κ3(γmnp)κ4κ5εκ1...κ5ρ1...ρ11

·dw̄ I
1 . . . dw̄

I
11[

ds I
]

= (λλ̄)−3(λγm)κ1(λγn)κ2(λγp)κ3(γmnp)κ4κ5ε
κ1...κ5ρ1...ρ11

·∂s I

ρ1
. . . ∂s I

ρ11
(239)
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The regularization factor will be chosen as N = e−λλ̄−rθ−w I w̄ I +s I d I

Therefore the N-point g-loop correlator takes the form

A =

∫
[dλ][dλ][dr ]

g∏
I =1

[dw I ][dw̄ I ][ds I ](d16d I )d16θN f (θ)

(240)

This regularization scheme can be safely used up to two loops, since
when λλ̄→ 0, the measure goes like

[dλ][dλ][dr ]

g∏
I =1

[dw I ][dw̄ I ][ds I ](d16d I )d16θN → λ8+3g λ̄11

(241)

and so the integrand must diverge slower than λ−8−3g λ̄−11. As one
needs to insert 3g-3 b-ghosts, and each b-ghost diverges as λ−4λ̄−3,
g=2 is the maximum number allowed.

For higher-loops a different regularization scheme has been proposed
and, in principle, it can be used for computing multiloop amplitudes.
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At 1-loop, one has the following useful result∫
d16d [dw ][dw̄ ][ds]e−λλ̄−rθ−ww̄+sddα1dα2dα3dα4dα5f

α1α2α3α4α5(r , θ)

= (λ3)α1α2α3α4α5f
α1α2α3α4α5(D, θ)

where (λ3)α1α2α3α4α5 is totally antisymmetric in its indices. Explicitly,

(λ3)α1α2α3α4α5 = (λγm)α1(λγn)α2(λγp)α3(γmnp)α4α5 (242)

We can now easily compute the 4-point 1-loop amplitude. Since one
needs to saturate 5 dα zero modes and each vertex operator contains
at most 1 d (through the term dαWα), the b-ghost must contribute
with 2 d ’s.

This term has the form

bd2 =
1

192(λλ̄)2
(dγmnpd)(λ̄γmnpr) (243)
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Therefore, one needs to compute∫
d16θ

∫
[dλ][d λ̄][dr ]e−λλ̄−rθ(λλ̄)−2(λ4)(λ̄γmnpD)AWWW (244)

Using U(5) arguments or the result (242), one can show that the
covariant expression for the integrand looks like

(λ̄γmnpD)

[
(λA)(λγmW)(λγnW)(λγpW)

]
(245)

Using again U(5) arguments or 10D pure spinor identities plus
superspace equations of motion one can show that (up to an overall
coefficient)

K1 = (244) = 〈(λA1)(λγmW2)(λγnW3)F4 mn〉 (246)
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Analogously, one can use the non-minimal pure spinor prescription to
compute the 4-point 2-loop open string amplitude. The kinematic
factor is given by

K2 ∝ 〈(λγmnpqrλ)F1 mnF2 pqF3 rs(λγsW4)〉 (247)

Using superspace equations of motion and pure spinor identities, one
learns that (up to an overall constant)

K2 = s12〈(λA1)(λγmW2)(λγnW3)F4 mn〉 (248)

Therefore we have shown that the tree-level, 1-loop and 2-loop
kinematic factors for the 4-point function are proportional to each
other. This result is valid for bosons and fermions, and component
amplitudes can easily be extracted using the familiar pure spinor
measure 〈λ3θ5〉 = 1.
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Curved Backgrounds

Pure spinor superstrings can easily be coupled to curved backgrounds.
The requirements of nilpotency and holomorphicity of the BRST
charge impose conventional and dynamical constraints the
background must satisfy. Type IIA/IIB, Type I, N=1 SYM.

α′-corrections modify these constraints in such a way that the pure
spinor BRST charge keeps nilpotent at quantum level. Consistency
with the GS mechanism.

The fact one can couple pure spinor superstrings to curved
background allows us in principle to study string theory in AdS5 × S5

at quantum level, and so the pure spinor formalism is the most
promising framework to understand better/prove the AdS/CFT
conjecture.
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Pure Spinor Master Actions

Using the non-minimal formalism one can formulate a BV-like
framework for pure spinor superfields.

In this manner, pure spinor master actions have been constructed for
several theories including N=1 super-Yang-Mills, N=1 super
Born-Infeld (abelian and non-abelian), N=1 Supergravity, etc.

Although the interaction terms in these actions are complicated
functions of non-minimal variables, the pure spinor actions are
remarkably much simpler than the component ones.

It has been shown there exists a systematic procedure to extract
equations of motion in ordinary superspace from these master actions
in non-minimal pure spinor superspace.
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11D Pure Spinors

11D pure spinors have been used to construct a pure spinor
supermembrane which reduces to the standard Type IIA pure spinor
superstring and the 11D pure spinor superparticle in the appropriate
limits.

The quantization of the 11D pure spinor superparticle describes the
BV version of 11D linearized supergravity.

In this framework, the 11D supergravity physical fields are located at
ghost number three.

A BRST-closed ghost number one vertex operator has been recently
constructed and a relation with the ghost number three vertex
operator has been proposed.

M-Theory conjecture: Scattering amplitudes of this 11D
supermembrane will contain non-perturbative information on
superstring theory.
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Other topics

Twistors.

Pure spinor chiral strings.

Pure spinor QFTs.

CY-compactifications.

Matrix theory.

. . .
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Summary
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The pure spinor formalism for superstrings produces compact
expressions in pure spinor superspace involving interactions of bosons
and fermions.

The non-minimal pure spinor formalism allows us to construct a
b-ghost satisfying the standard relation {Q, b} = T .

Using pure spinor identities and superspace equations of motion,
many scary-looking expressions can easily be manipulated and
calculated in pure spinor superspace.

The non-minimal formalism allows us to easily see (compared to the
other formalisms) how the kinematic factors for the 4-point function
at 0-, 1-, 2-loops are related to each other.

Pure spinors have many other interesting applications in addition to
the one we have seen in this minicourse. These include the study of
superstrings in AdS5 × S5, stringy corrections for superspace
constraints, QFT for maximally supersymmetric gauge theories,
M-Theory, etc.
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