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Abstract In these proceedings we review and expand on the recent appearance of 
iterated integrals on an elliptic curve in string perturbation theory. We represent 
the low-energy expansion of one-loop open-string amplitudes at multiplicity four 
and fve as iterated integrals over holomorphic Eisenstein series. The framework of 
elliptic multiple zeta values serves as a link between the punctured Riemann surfaces 
encoding string interactions and the iterated Eisenstein integrals in the fnal results. 
In the fve-point setup, the treatment of kinematic poles is discussed explicitly. 

1 Introduction 

Open-string scattering amplitudes at the one-loop level have proven to be a valuable 
laboratory for the application of techniques related to iterated elliptic integrals and 
elliptic multiple zeta values. Although elliptic curves and the classical elliptic in-
tegrals are one of the best-studied topics of 18th/19th-century mathematics, iterated 
integrals on elliptic curves and their associated special values are still a prominent 
topic in the recent mathematics literature, see for instance refs. [1–3]. 

In high-energy physics, several integrals related to various scattering amplitudes 
in QCD have been solved using methods and techniques inherent to the elliptic 
curve. The concept of iterated integrals on an elliptic curve, however, made a frst 
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appearance in physics via one-loop scattering amplitudes in open-superstring theory 
in [4]. Since then, several refnements and extensions of the techniques have been 
put forward from different perspectives, see for examples refs. [5–10]. 

Moreover, frst connections between the open-string setup of iterated integrals 
and non-holomorphic modular invariants encountered in closed-string amplitudes 
have been investigated in ref. [11]. The modular invariants in closed-string calcula-
tions are formulated in the framework of modular graph functions [12, 13], where 
tremendous progress in understanding their multiloop systematics has been made 
during the last couple of months [14, 15]. 

The low-energy expansion of one-loop scattering amplitudes in open-superstring 
theory gives rise to iterated elliptic integrals evaluated at special points: those func-
tions of the modular parameter τ of the elliptic curve are called elliptic multiple 
zeta values and come in a twisted and an untwisted version. Both, untwisted and 
twisted elliptic multiple zeta values, however, allow for an alternative representa-
tion in terms of iterated integrals over the modular parameter τ: iterated Eisenstein 
integrals. 

In these proceedings we are extending earlier results in two directions: we present 
low-energy expansions for the planar and non-planar fve-point amplitudes, and we 
cast the four- and fve-point expressions in the language of iterated Eisenstein inte-
grals. 

The current proceedings are structured as follows: in section 2 we provide back-
ground information and defne the mathematical setting for the calculation of one-
loop open-string amplitudes at various multiplicities. We classify the occurring in-
tegrals and state the integral contributions to be evaluated at the four- and fve-point 
level. In section 3 a short introduction to twisted and untwisted elliptic multiple zeta 
values is provided. We relate these special values to iterated integrals over different 
favors of Eisenstein series. This representation allows to infer relations between 
different twisted and untwisted elliptic multiple zeta values, which paves the way 
towards a canonical representation. Accordingly, in sections 4 and 5 we present and 
discuss the results of the four- and fve-point integrals from section 2 and repre-
sent them in terms of conventional elliptic multiple zeta values as well as iterated 
integrals over Eisenstein series. 

2 One-loop open-string amplitudes, planar and non-planar 

2.1 General setup, planar and non-planar 

Scattering amplitudes in string theories are derived from punctured Riemann sur-
faces called worldsheets whose genus corresponds to the loop order in perturbation 
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theory. In these proceedings we are going to consider the one-loop order exclu-
sively, where the relevant topology for closed strings is a torus, and open-string 
amplitudes receive contributions from worldsheets of cylinder- and Mœbius-strip 
topologies. In all cases, the punctures correspond to the insertion of external states 
on the worldsheet via vertex operators; those are conformal primary felds that carry 
the information on the external momenta and polarizations. For open strings, the 
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Fig. 1 The worldsheets for one-loop scattering of open strings include the topology of a cylinder. 
Conformal invariance on the worldsheet can be used to map external states to punctures on the 
cylinder boundaries. If vertex operators are inserted on one boundary only, the situation is referred 
to as the planar cylinder whereas the second topology is called the non-planar cylinder. 

vertex operators are inserted on the worldsheet boundaries, see fgure 1. Moreover, 
each external open-string state carries additional degrees of freedom encoded in Lie-
algebra generators ta , called Chan–Paton factors. They enter scattering amplitudes 
in the form of traces, where the ordering of the generators refects the distribution of 
vertex operators over the boundaries [16]. We will only consider massless vibration 
modes of the open superstring as an external state, i.e. one-loop scattering of gauge 
bosons and their superpartners. Accordingly, the Chan–Paton degrees of freedom of 
the external states are often referred to as color. 

Having a single boundary only, the Mœbius strip can only contribute single traces 
to the n-point amplitude 

Mn 
Moeb = −32 ∑ Tr(t1tρ(2)tρ(3) . . . tρ(n))AMoeb(1,ρ(2),ρ(3), . . . ,ρ(n)) , (1) 

ρ∈Sn−1 

while the two boundary components of the cylinder admit double traces in the color 
decomposition. Accordingly, for a four-point amplitude the planar and non-planar 
cylinder contributions read 
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M4 
cyl = ∑ 

� 
N Tr(t1tρ(2)tρ(3)tρ(4))Acyl(1,ρ(2),ρ(3),ρ(4)) 

ρ∈S3 

+ Tr(t1tρ(2))Tr(tρ(3)tρ(4))Acyl(1,ρ(2)|ρ(3),ρ(4)) (2)� 
+ Tr(t1)Tr(t2t3t4)Acyl(1|2,3,4)+(1 ↔ 2,3,4) . 

At higher multiplicity n, the analogous double-trace expressions in 

Mn 
cyl = N ∑ Tr(t1tρ(2) . . . tρ(n))Acyl(1,ρ(2), . . . ,ρ(n)) + double traces , (3) 

ρ∈Sn−1 

comprise all partitions of the external states over the two boundaries along with all 
cyclically inequivalent arrangements. For instance, the double-trace sector of the 
fve-point amplitude features permutations of Tr(t1t2)Tr(t3t4t5)Acyl(1,2|3,4,5) and 
Tr(t1)Tr(t2t3t4t5)Acyl(1|2,3, 4,5), with an obvious generalization to higher multi-
plicity. 

The number N of colors in the single-trace sector of eqs. (2) and (3) arises from 
the trace over the identity matrix corresponding to the empty boundary component. 
The color-ordered amplitudes AMoeb and Acyl in eqs. (1) and (3) are determined by 
integrating a correlation function of vertex operators over the punctures such that 
their cyclic ordering on each boundary component matches the accompanying color 
traces [16]. In the parametrization of the cylinder as half of a torus with purely 
imaginary modular parameter τ = it, t ∈ R, see fgure 2, the integration domains for 
the punctures are of the form 

tD(1,2, . . . , j| j+1, . . . ,n) = {zi ∈ C , Imz1,2,..., j = 0 , Imz j+1,...,n = 2 , 

0 ≤ Rez1 < Rez2 < . . . < Rez j < 1 , 0 ≤ Rez j+1 < . . . < Rezn < 1} . (4) 
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Fig. 2 In the boundary parametrization eq. (4), worldsheets of cylinder topology are mapped to 
the shaded regions in the left (right) panel for the planar (non-planar) case. These regions cover 
half of a torus with modular parameter τ = it and identifcations of edges marked by and , 
respectively. The Mœbius-strip topology is not drawn here as its contributions to the amplitude can 
be inferred from the planar cylinder [17], cf. eqs. (6) and (8). 
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In particular, eq. (4) refers to the non-planar amplitude Acyl(1,2, . . . , j| j+1, . . . ,n) 
along with the double trace Tr(t1t2 . . . t j)Tr(t j+1 . . . tn) with j = 1,2, . . . ,n−1. We 
will also write D(1,2, . . . ,n) = D(1,2, . . . ,n|0/) for the integration domain of the 
planar cylinder amplitude Acyl(1,2, . . . ,n) in eq. (3). 

The correlation functions in the integrand will be denoted by Kn. They depend 
on the punctures z j, the modular parameter τ as well as the external polarizations 
and momenta of the gauge supermultiplet. For the cylinder topology, the integration 
domain for modular parameters τ = it is t ∈ R+ or 

2πiτ −2πtq = e = e , q ∈ (0,1) . (5) 

Then, the expression for color-ordered cylinder amplitudes reads Z 1 Z 
Acyl(1,2, . . . , j| j+1, . . . ,n) = 

dq 
dz1 dz2 . . . dzn δ (z1)Kn , (6) 

0 q 
D(1,2,..., j| j+1,...,n) 

where translation invariance on a genus-one surface has been used to fx z1 = 0 
through a delta-function insertion. We will also express the punctures in eq. (4) in 
terms of real variables xi ∈ (0,1) and parametrize D(1, 2, . . . , j| j+1, . . . , n) via n 

xi : i=1,2,..., jzi = τ , 0 ≤ x1 < x2 < .. . < x j < 1 , 0 ≤ x j+1 < .. . < xn < 1 . (7)
2 +xi : i= j+1,...,n 

For single-trace amplitudes in eq. (6) with j = n, the integration over q introduces 
endpoint divergences as q → 0. The latter cancel against the divergent contributions 
from the Mœbius strip in eq. (1) Z −1 Zdq

AMoeb(1,2, . . . ,n) = dz1 dz2 . . . dzn δ (z1)Kn (8)
0 q 

D(1,2,...,n) 

if N = 32, i.e. if the gauge group1 is taken to be SO(32) [17]. The change of variables 
leading to the range q ∈ (−1,0) in eq. (8) can also be found in the reference. 

In this work, we will be interested in the low-energy expansion of the integrals 
over the cylinder punctures in eq. (6) at fxed value of q but unspecifed choice of 
the gauge group. For instance, the integrals over D(1,2,3|4) turn out to have an 
interesting mathematical structure, even though their coeffcients ∼ Tr(t4) vanish 
for the physically preferable gauge group SO(32). At the level of the integrand w.r.t. 
q, the Mœbius-strip results in eq. (8) can be inferred from the planar instance of 
eq. (6) by sending q →−q [17]. 

1 The choice of gauge group SO(32) also ensures that the hexagon gauge anomaly in (n ≥ 6)-point 
open-superstring amplitudes cancels [18, 19]. 



���� ����

6 Johannes Broedel and Oliver Schlotterer 

2.2 Four-point amplitudes 

The four-point cylinder amplitude eq. (6) of massless open-superstring states is gov-
erned by the correlation function 

4 � �1 
2 si jG(zi j,τ)K4 = s12 s23 Atree 

SYM(1,2,3,4)∏exp , (9) 
i< j 

which has frstly been derived for external bosons in 1982 [20]. The exponentials of 
eq. (9) involve dimensionless Mandelstam variables si j 

si j = 2α
0ki · k j (10) 

with inverse string tension α 0 . Moreover, eq. (9) features the bosonic Green function 
on a genus-one worldsheet 

θ1(z,τ) 
2 2π

G(z,τ) = log − (Imz)2 . (11)
θ1 
0 (0,τ) Imτ 

with zi j = zi − z j as its frst argument, where θ1 is the odd Jacobi function 

θ1(z,τ) = 2q1/8 sin(πz) 
∞

∏
n(1− qn)(1− 2q cos(2πz)+ q2n) . (12) 

n=1 

Finally, external polarizations enter eq. (9) through the color-ordered (super-)Yang– 
Mills tree-level amplitude Atree 

SYM(1,2, 3,4). 
With respect to relabeling of the external legs, there are three inequivalent rep-

resentatives for the planar and non-planar four-point amplitudes. Using eqs. (6) 
and (9), they can be written as 

Acyl(1,2,3,4) = s12s23Atree 
Z 1 dq 

SYM(1, 2,3,4) I1234(si j,q) 
0 qZ 1 

s12s23AtreeAcyl(1,2,3|4) = 
1 

SYM(1,2,3,4) 
dq

I123|4(si j, q) (13)
2 0 qZ 1 

Acyl(1,2|3,4) = 
1 dq

I12|34(si j, q) ,s12s23Atree 
SYM(1,2,3,4)

2 0 q 

where the integrals over the positions of the punctures defned in eq. (7) read 

Z 1 Z x4 
Z x3 

Z x2 � 4 �si j 
∑I1234(si j,q) = dx4 dx3 dx2 dx1 δ (x1)exp G(xi j)20 0 0 0 i< j � 4 Z 1 � � 3 3 �si j s j4 G( τ 

2 +xi j)∏ ∑ ∑dxl δ (x1)exp I123|4(si j,q) = G(xi j)+ (14)
2 20 i< j j=1l=1 
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τ +xi j)∏ dxl δ (x1)exp .I12|34(si j,q) = 

0l=1 2 2 2i=1,2 
j=3,4 

Here and below, the dependence on τ in the Green functions is left implicit for 
ease of notation. The factors of 1 in eq. (13) are introduced to obtain a more con-2 
venient description of the integration domain for the non-planar cases I123|4(si j,q) 
and I12|34(si j,q): The natural integration domains 0 ≤ x1 < x2 < x3 < 1 and 0 ≤ 
x3 < x4 < 1 expected from Tr(t1t2t3) and Tr(t3t4) can be rewritten to yield an inde-
pendent integration of all the xi over (0,1) when taking the symmetry of the color 
factors or the integrands into account. 

The integrals in eq. (14) are the central four-point quantities in these proceedings. 
In section 4, we are going to review and extend the results of refs. [4, 6] on their 
low-energy expansion around α 0 = 0, i.e. the Taylor expansion in the dimensionless 
Mandelstam invariants eq. (10). Note that momentum conservation and the choice 
of massless external states in eq. (9) with k2 

j = 0 ∀ j = 1,2,3,4 relate the four-point 
Mandelstam invariants 

4 

∑ k j = 0 ⇒ s12 = s34 , s14 = s23 , s13 = s24 = −s12 − s23 . (15) 
j=1 

Accordingly, the integrand in eq. (9) is unchanged if the Green function is shifted 
by G(z,τ) → G(z,τ)+ f (τ) as long as f (τ) does not depend on the position of the 
punctures. 

2.3 Five-point amplitudes 

The massless fve-point correlator for the cylinder amplitude eq. (6) is given by2 

[23, 24] 

∏
� 5 

23 s23 C1|23,4,5 +(23 ↔ 24, 25,34,35,45) 
i< j 

where the Green function is defned in eq. (11) and we use the following shorthand 
for doubly-periodic functions of the punctures with a simple pole at zi −z j ∈ Z+τZ 

f (1) 
Imzi j 

i j = ∂z logθ1(zi j,τ)+ 2πi = ∂zG(zi j,τ) . (17)
Imτ 

The kinematic factors in eq. (16) obey symmetries C1|23,4,5 = C1|23,5,4 = −C1|32,4,5 
and can be expressed in terms of (super-)Yang–Mills tree-level amplitudes [24] 

2 Earlier work on fve- and higher-point correlation functions for one-loop open-superstring ampli-
tudes includes refs. [21, 22]. 

� � � 
f (1) 1 

2 si jG(zi j) (16)K5 = exp , 
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s24 Atree 

SYM(1,3,2,4,5) − s34 AtreeC1|23,4,5 = s45 SYM(1,2,3,4,5) . (18) 

The color decomposition of the fve-point cylinder amplitude is a straightforward 
generalization of eq. (2), and we collectively denote the color-ordered amplitudes 
by Acyl(λ ) with λ = 1,2,3,4,5 in the planar and λ = 1,2,3,4|5 or λ = 1,2,3|4,5 
in the non-planar sector. Then, one can combine eqs. (16) and (18) to bring all the 
cylinder contributions to the fve-point amplitude into the form 

dq
I
λ 
23(si j,q)Atree 

λ (si j, q) AtreeAcyl(λ )= 
Z 1 � 

SYM(1,2,3,4,5)+I32 
SYM(1, 3,2,4,5) 

� 
(19)

0 q 

for some integrals I
λ 
23(si j,q) and I

λ 
32(si j,q) over the punctures whose domain D(λ ) 

is defned by eq. (4). The color-ordered (super-)Yang-Mills amplitudes obtained 
from relabelings of eq. (18) have been written in terms of a two-element basis of 
Atree 

SYM(1,2,3,4,5) and Atree 
SYM(1,3,2, 4,5) using Bern–Carrasco–Johansson (BCJ) re-

lations [25]. For planar choices of λ , for example, both I
λ 
23(si j,q) and I

λ 
32(si j,q) can 

be reduced to the following permutation-inequivalent integrals 

Z 1 � 4 Z � � 5 �xl+1 si j 
δ (x1) f 

(1) 
12H12 

12345(si j, q) = dx5 ∏ ∑dxl G(xi j) (20)exp 
20 0l=1 i< j Z 1 � 4 Z xl+1 � � 5 �si j 

δ (x1) f 
(1) 
13Hb13 

12345(si j, q) = ∑∏ 
l 1= 

dx5 dxl G(xi j) . (21)exp 
20 0 i< j 

Hi j The hat-notation in (21) and (23) below is used to distinguish integrals b with a
λ 

regular Taylor expansion around si j=0 from cases Hi j with kinematic poles of the 
λ 

−1form s , see section 5.1. In the non-planar sector with λ = 1,2,3|4,5, on the other i j 

hand, I
λ 
23(si j,q) and I

λ 
32(si j, q) can be assembled from permutations of 

� 5 Z 1 �Z x3 
Z x2 � 5 �si j dx1 δ (x1) f 

(1) 
12 

τ 
2 +xi j)H12 

123|45(si j,q) = ∑∏ G(δi j dxl dx2 exp 
20 0 0 i< jl=3 

(22) � 5 Z 1 �Z x3 
Z x2 � 5 �si j dx1 δ (x1) f 

(1) 
14Hb14 

123|45(si j,q) = τ 
2 +xi j)∏ ∑ G(δi j dxl dx2 exp ,

20 0 0 i< jl=3 

(23) 

where δ12 = δ13 = δ23 = δ45 = 0 and δi j = 1 if i = 1,2,3 and j = 4,5. The analogous 
non-planar integral with f (1) in the place of f (1) and f (1) vanishes, because the45 12 14 

integration measure is symmetric in 4,5 while f (1) = − f (1) 45 54 , 

� 5 Z 1 �Z x3 
Z x2 � 5 �si j dx1 δ (x1) f 

(1) 
45 G(δi j 

τ 
2 + xi j)∏ ∑dxl dx2 = 0 . (24)exp 

20 0 0 i< jl=3 
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Note that there are fve independent Mandelstam variables for fve massless parti-
cles, for example s12,s23,s34,s45,s51, 

5 

∑ k j = 0 ⇒ s13 = s45 − s12 − s23 and cyc(1,2,3,4,5) . (25) 
j=1 

Similarly, the non-planar sector with λ = 1,2,3, 4|5 admits three topologies of 
permutation-inequivalent integrals: with insertions f12 

(1) 
, f13 

(1) and f45 
(1) beyond the 

Koba–Nielsen-factor, respectively. 

2.4 Higher-point amplitudes 

Starting from six external states, the correlators Kn no longer boil down to tree-
level amplitudes Atree 

SYM(. . .) in (super-)Yang–Mills theory. Instead, one fnds a more 
general class of kinematic factors, see refs. [26, 27] for their precise form and the 
accompanying functions of the punctures at six points. 

3 Mathematical tools/objects 

Employing the form of the open-string one-loop propagator in eq. (9) and expand-
ing the exponentials of the propagators in powers of α 0 (cf. eq. (10)), one fnds all 
integrals in the previous section to boil down to iterated integrals on the elliptic 
curve. The integration kernels fi j 

(1) in eq. (17) and their higher-weight generaliza-
tions are canonical differentials on the elliptic curve that can be generated by a 
non-holomorphic extension of the Eisenstein–Kronecker series [1, 28] � � 

θ 0Imz 1(0,τ)θ1(z + α,τ)
2πiα 

∞

∑Ω (z,α,τ) = exp α
n−1 f (n)(z,τ) . (26)= 

Imτ θ1(z,τ)θ1(α,τ) n=0 

The expansion in the second equality yields doubly-periodic functions 

f (n)(z,τ) = f (n)(z + 1,τ) = f (n)(z + τ,τ) , f (n)(−z, τ) = (−1)n f (n)(z,τ) , (27) 

for example f (0) = 1 and f (1)(z,τ) = ∂z logθ1(z, τ)+ 2πi Imz 
Imτ . Equation (17) arises 

from the shorthand fi j 
(n)

= f (n)(zi − z j,τ). The Fay relations of the Eisenstein– 
Kronecker series [1, 29] 

Ω (z1,α1,τ)Ω (z2,α2, τ)=Ω (z1, α1+α2,τ)Ω (z2−z1,α2,τ)+(z1,α1↔z2, α2) (28) 

imply the following component relations when Laurent expanded in the bookkeep-
ing variables αi [4]: 
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f (m+k)f (n) f (m)

= − f (m+n)
(−1)k f (n−k) 

i j jl il + ∑ il jl kk=0 � �m n − 1 + k
f (m−k) f (n+k)

+ ∑ (−1)k
k il i j . (29) 

k=0 

As already noted for the Green function after eq. (14), all functions considered in 
these proceedings are functions of the modular parameter τ , which we will suppress 
here and below. Using the integration kernels f (n)(z) and the following defnition of 
elliptic iterated integrals3 with Γ( ;z) = 1, � n1 n2 ... n` � Z z � n2 ... n` � 

Γ b1 b2 ... b` ;z = dt f (n1)(t − b1) Γ b2 ... b` ; t , z ∈ [0,1] , (30)
0 

one can solve the integrals over the punctures z j in one-loop open-superstring am-
plitudes order by order in α 0 . In particular, it will be explained in detail in section 4 
how the mathematical tools of this section yield a recursive and algorithmic proce-
dure to expand the four-point integrals eq. (14) to any desired order in α 0 . 

Allowing for rational values si and ri in the fundamental elliptic domain only, 
twists bi = si + riτ with ri,si ∈ [0,1) lead to the notion of twisted elliptic multiple 
zeta values or teMZVs [6]: �n1, n2, ..., n` � Z 

ω b1, b2, ..., b` = f (n1)(z1 − b1)dz1 f (n2)(z2 − b2)dz2 . . . f (n`)(z` − b`)dz` 
0≤zi≤zi+1≤1 � � 

n` n`−1 ... n1 = Γ ... b1
;1 . (31)b` b`−1 

If there are no twists, that is, bi = 0 ∀ i, one obtains untwisted elliptic multiple zeta 
values or eMZVs, for which a simplifed notation is used [4, 5]: � �n` ... n2 n1ω(n1,n2, . . . ,n`) = Γ 0 ;1 = Γ(n`, . . . ,n2,n1;1) . (32)0 ... 0 

For eMZVs and teMZVs defned in eqs. (31) and (32), the quantities w = ∑` 
i=1 ni, 

and the number ̀  of integrations in are referred to as weight and length of the elliptic 
iterated integral and the corresponding (t)eMZV, respectively. 

In view of the simple pole of f (1)(z,τ) at z = 0,1, eMZVs with entries n1 = 1 
or n` = 1 suffer from endpoint divergences, whose regularization was discussed 
in ref. [4]. Similarly, a regularization scheme for the divergences caused by twists 
b ∈ R in eq. (31) can be found in ref. [6]. 

3 The iterated integrals in eq. (30) are not homotopy invariant. Still, one can fnd a homotopy-� n1 n2 ... n` � 
invariant completion for each Γ b1 b2 ... b` ;z from the generating series in ref. [1] (see also sub-
section 3.1 of ref. [4]). 
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3.1 Elliptic multiple zeta values in terms of iterated Eisenstein 
integrals 

While teMZVs can be represented as iterated integrals over the positions zi of vertex 
operators, the analytically favorable way is to convert them to iterated integrals in 
the modular parameters τ . The main reason is, that the integration kernels appearing 
in this setting are very well-known objects: holomorphic Eisenstein series for con-
gruence subgroups of SL2(Z) of various levels M. For level 1, iterated τ-integrals 
over Eisenstein series do not satisfy any relations except for shuffe [30], hence, 
representing these (untwisted) eMZVs in terms of iterated Eisenstein integrals au-
tomatically exposes all their relations over the rational numbers. For levels M > 1, 
however, the Eisenstein series are not independent, when evaluated at rational points 
of the lattice. These relations have been investigated and discussed in ref. [10] and 
allow to relate different iterated integrals, even between different levels M. 

There does exist a straightforward method for converting iterated z-integrals un-
derlying (t)eMZVs to iterated Eisenstein integrals E0 over Eisenstein series [2,5,6]: 
since the resulting “number” is still going to be a function of the modular param-
eter τ , one can conveniently take a derivative with respect to τ . Let us make this 
construction precise in the next paragraphs. 

Given a teMZV of the form (31), let us take all of the twists bi from a rational lat-� rtice ΛM = M + τ M
s : r,s = 0,1,2, . . . ,M−1 within the elliptic curve characterized 

by an integer level M ∈ N. The derivative in τ of the teMZV is most conveniently 
expressed in terms of functions4 

h(n)(bi,τ) = (n − 1) f (n)(bi,τ) , (33) 

evaluated at lattice points bi ∈ ΛM , that is, Eisenstein series for congruence sub-
groups of SL2(Z) [6]: � �� n1, ..., n` � 

= h(n`+1)(−b`)ω 
n1, ..., n`−1 − h(n1+1)(−b1)ω 

�n2, ..., n` � 
2πi∂τ ω b1, ..., b` b1, ..., b`−1 b2, ..., b` " � �` ni−1+1 � �ni + k − 1 n1, ..., ni−2, ni+k, ni+1, ..., n`h(ni−1−k+1)(bi−bi−1)ω∑ ∑θni≥1+ b1, ..., bi−2, bi, bi+1, ..., b`ki=2 k=0 � �ni+1 � �ni−1 + k − 1 n1, ..., ni−2, ni−1+k, ni+1, ..., n`h(ni−k+1)(bi−1−bi) ω∑− θni−1≥1 b1, ..., bi−2, bi−1, bi+1, ..., b`kk=0 #� � 

n1, ..., ni−2, 0, ni+1, ..., n` .b1, ..., bi−2, 0, bi+1, ..., b` 

(34) 

+(−1)ni+1
θni−1≥1θni≥1h(ni−1+ni+1)(bi−bi−1)ω 

4 Note that the normalization conventions of the functions h(n)(b,τ) in eq. (33) and ref. [6] differ 
sfrom the defnition of the Eisenstein series h( M

n 
, 
) 
r,s = f (n)( M

r + M τ,τ) for congruence subgroups of 
SL2(Z) in ref. [10]. 
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We have introduced θn≥1 = 1 − δn,0 for non-negative n, indicating that ni = 0 cause 
certain terms in the last three lines to vanish. For teMZVs of length ` > 1 on the 
left-hand side of eq. (34), each teMZV on the right-hand side has lower length `−1. 
Hence, eq. (34) allows to recursively convert teMZVs to iterated integrals over the 
functions h(k)(b,τ), terminating with a vanishing right-hand side for ` = 1. Upon 
evaluation at fxed lattice points bi ∈ ΛM , the functions h(k)(b,τ) are holomorphic 
in the modular parameter τ . For any k > 2, they can be conveniently represented as 
a lattice sum 

2πi r m−sn � �r s e M 
h(k) + τ ,τ = (k − 1) ∑ (35)

M M (n + mτ)k . 
(m,n)6=(0,0) 

In order to render the corresponding expression fnite for k = 2, the summation 
prescription has to be modifed. Alternatively, level-M Eisenstein series have series 
expansions in q1/M [6], for example one fnds � 

τ � 
ζ4 

� � 
h(4) 5/2 ,τ = 7−240q1/2−240q−6720q3/2−240q2−30240q + · · · . (36)

2 4 

For r = s = 0, one recovers the usual holomorphic Eisenstein series (cf. eq. (35)) 

h(k)(0,τ) 1 
= Gk(τ) = ∑ k ≥ 3 . (37)

1− k (n + mτ)k , 
(m,n)6=(0,0) 

Correspondingly, eq. (34) reduces to the differential equation for eMZVs stated in 
eq. (2.47) of ref. [5]. Nicely, the situation k = 2 in the equation above does not occur, 
when considering the τ-derivative eq. (34) of convergent eMZVs. 

Considering the differential equation (34) and the identifcation (37), one can 
fnally rewrite every eMZV in terms of iterated integrals of Eisenstein series [5]: 

Z q G0dqr (qr)
E0(k1,k2, . . . ,kr;q) := − kr E0(k1,k2, . . . ,kr−1;qr) (38)

0 qr (2πi)kr Z G0 G0dq1 dqr k1 
(q1) kr 

(qr) 
= (−1)r · · · · · · . 

q1 qr (2πi)k1 (2πi)kr 

0≤q1≤q2≤...≤qr≤q 

The recursion starts with E0(;τ) = 1, and the non-constant parts of Eisenstein series 
are defned as 

G0 (τ) = G2n(τ) − 2ζ 2n , G0(τ) = G0
0(τ) = −1 (39)2n 

with n ∈ N. For iterated integrals E0(k1,k2, . . . , kr;q) in eq. (38), the number of non-
zero entries (k j 6= 0) is called the depth of the iterated Eisenstein integral. 

The iterated Eisenstein integrals E0(k1, . . . ,kr;q) with k1 6= 0 are nicely conver-
gent and do not need to be regularized. Even more, the conversion of untwisted 
eMZVs to iterated Eisenstein integrals provides an easy way to identify their rela-
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tions [5, 30, 31]. Many of such eMZV relations are available in digital form [32] 
similar to the datamine of multiple zeta values [33]. 

In the same way as one can rewrite untwisted eMZVs as iterated integrals over 
the Eisenstein series eq. (37), one can rewrite teMZVs as iterated integrals over the 
level-M Eisenstein series defned in eq. (36). In contrast to the situation for usual 
holomorphic Eisenstein series, there are several linear relations between level-M 
Eisenstein series, which are discussed in ref. [10] and which need to taken into 
account when deriving functions relations in general. In the realm of string ampli-
tudes discussed in the next subsection, we will however encounter only one partic-
ular Eisenstein series at level-2, which does not require these additional relations in 
order to reach a canonical representation. 

3.2 Eisenstein series of level 2 in the string context 

Although the differential equation (34) is applicable to Eisenstein series evalu-
ated at points of any sublattice ΛM , let us focus on the lattice Λ2 suitable for 
string amplitudes. As will be elaborated in section 4, the parametrization of the 
cylinder worldsheet in fgure 2 gives rise to teMZVs with twists b ∈ {0, τ/2} in 
the non-planar amplitudes. Hence, the differential equation (34) allows to express � 

τ 
� 

the α 0-expansion in terms of iterated Eisenstein integrals involving h(k) 2 ,τ and 
h(k) (0,τ) = (1− k)Gk(τ). 

When expressing the teMZVs from the non-planar integrals in terms of a basis� 
τ 

� 
of iterated Eisenstein integrals, the contributions from h(k) 2 ,τ turn out to cancel. 
In other words, even for the non-planar integrals I12|34 and I123|4 of eq. (14), the α 0-
expansions shown in the next section are expressible in terms of untwisted eMZVs 
or iterated integrals over Gk(τ) exclusively. In spite of the cancellation of all non-
trivial twists, the representation of intermediate results in terms of Eisenstein series 
for congruence subgroups of SL2(Z) has been indispensable to attain a canonical 
form for all contributions. 

As an example for the τ-derivative in eq. (34), let us take the teMZVs � � � 
τ � � � � �

∂ 0, 1, 1 0, 1 2, 1 
= h(2)2πi ω ,τ ω − ω0, τ/2, τ/2 0, τ/2 τ/2, τ/2∂τ 2� � � 

τ �
∂ 0, 1 

= h(2)2πi ω ,τ − ζ2 . (40)0, τ/2∂τ 2 

Since intermediate steps in the expansion of I123|4 and I12|34 turn out to involve � � � �2 � 
τ 

�0, 1, 1 0, 1the rigid combination 2ω 0, τ/2, τ/2 −ω 0, τ/2 , the contribution of h(2) 2 ,τ in � � � �20, 1, 1 0, 1 ζ2eq. (40) cancels. Moreover, the relation 2ω
τ/2 − ω

τ/2 = ω(0,0,2)+ 0, τ/2, 0, 3 
can be checked by taking higher τ-derivatives of the left-hand side. 

Similarly, the τ-derivative eq. (34) and the decomposition described in the previ-
ous subsection yield 
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ζ2
ω(0,0,2) = − − 6E0(4,0;τ)

3 
3ζ3 9

ω(0,1,0,0) = − E0(4,0,0;τ) (41)
4π2 2π2 

ω(0,3,0,0) = 180E0(6,0,0;τ) . 

ζ2The terms − and 4
3 
π

ζ3
2 at the order of q0 exemplify that integration constants have to 3 

be taken into account when expressing teMZVs as integrals over their τ-derivatives 
eq. (34). For the twists b ∈ {0, τ/2} of our interest, the integration constants are 
rational combinations of (2πi)−1 and multiple zeta values that can be determined 
by the techniques in section 2.3 of [5] and section 3.2 of [6]. 

4 Four-point results in different languages 

In this section, we apply the mathematical framework of section 3 to the α 0-expansion 
of the four-point cylinder integrals eq. (14). In order to relate the Green function 
eq. (11) to the constituents of teMZVs, we use momentum conservation eq. (15) to 
rewrite the target integrals5 as 

Z 1 Z x4 
Z x3 

Z x2 � 4 � 
∑I1234(si j,q) = dx4 dx3 dx2 dx1 δ (x1)exp si jP(xi j,q) 

0 0 0 0 i< j � 4 Z 1 � � 3 3 � 
∏ 
l 1= 0 

dxl δ (x1) exp ∑ si jP(xi j, q)+ ∑I123|4(si j,q) = s j4Q(xi j,q) (42) 
i< j j=1 � 4 Z 1 � � �s12

∏ ∑ si jP(xi j,q)+ ∑dxl δ (x1) exp I12|34(si j,q) = q si jQ(xi j,q)4 , 
0l=1 i=1,2(i, j)= 

j=3,4(1,2),(3,4) 

with the expressions � �
1G(z,τ), Imz = 0 P(x,q) = Γ 0 ;x − ω(1,0) (43)� � � �Imτ 1 1, 0G(z,τ), Imz = Q(x,q) = Γ τ/2 ;x − ω , (44)

τ/2, 02 

where x = Rez, and the Green functions P(x,q) and Q(x, q) connect punctures on� �
1the same and on different cylinder boundaries, respectively. Both summands Γ 0 ;x 

and ω(1,0) in eq. (43) individually represent divergent integrals whose regulariza-
tion is discussed in detail in section 4.2 of [6]. As visualized in fgure 2, the twists 
τ/2 in eq. (44) stem from the displacement of the two cylinder boundaries in our 

5 The derivation of eq. (42) from eq. (14) is elaborated on in ref. [6]. The only difference is that the 
present defnitions of P(x,q) and Q(x,q) in eqs. (43) and (44) deviate from those in the reference 
by an additive constant. Instead, the objects P(x,q) and Q(x,q) defned in eqs. (43) and (44) match 
the expressions in ref. [11] up to an overall minus sign. 
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parametrization through a rectangular torus. Accordingly, the factor of qs12/4 in the 
above expression for the non-planar contribution I12|34(si j,q) can be traced back to 
the term ∼ (Imz)2 in the Green function eq. (11). 

When inserting the differences xi j = xi − x j of the cylinder punctures into the 
Green functions P(x,q) and Q(x,q), the following representations turn out to be 
particularly convenient for the α 0-expansion of eq. (42) � � � �1 1P(xi j,q) = Γ x j ;xi + Γ 0 ;x j − ω(1, 0) , 1 < i < j (45) � � � � � � 

1 1 1, 0Q(xi j,q) = Γ x j +τ/2 ;xi + Γ τ/2 ;x j − ω
τ/2, 0 , 1 < i < j . (46) 

4.1 The proof of concept 

The α 0-expansion of the open-string integrals eq. (42) at fxed6 τ can be obtained 
by Taylor-expanding the exponentials in the integrand w.r.t. si j and employing the 
representations of the Green functions in eq. (43) to eq. (46). The order-by-order 
integration can be reduced to the defnitions of elliptic iterated integrals and teMZVs 
in section 3 as soon as the following technical subtleties have been settled: 

• The recursive defnition eq. (30) of elliptic iterated integrals cannot be used 
for integrands of the form dt f (n)(t−b1) f (m)(t−b2) with multiple occurrence 
of the integration variable t as arguments of different integration kernels in 
eq. (26). This situation can be remedied by using the Fay relation (29), which 
can be viewed as the elliptic analogue of partial-fraction relations 1 +(t−b1)(t−b2) 

cyc(t,b1,b2) = 0. Then, each term on the right-hand side of the Fay relation can 
be recursively integrated via eq. (30). 

• The integration variable of eq. (30) is not allowed to show up in the shifts bi of 
the iterated integral Γ in the integrand. Therefore one has to derive functional 
relations between different iterated integrals. The main mechanism to derive re-
lations like � � � � � � � � � � 

3, 1 0, 4 1,3 2, 2 4, 0
Γ ;z = −4Γ + Γ − Γ − Γ (47)0, z 0, 0 ;z 0,0 ;z 0, 0 ;z 0, 0 ;z 

consists of writing Γ as an integral over its own z-derivative and using again Fay 
relations on the integration kernels f (n) before integrating back [4]. The need 
for relations like eq. (47) arises less frequently if the representations eqs. (43) 
and (44) are used for propagators at argument x1 j with j 6= 1 and eqs. (45) 
and (46) for propagators at argument xi j with 1 < i < j. 

6 Given that the α 0-expansions in this work are performed at fxed τ , our results do not expose the 
branch cuts of the loop amplitudes which result from the integral over q in eqs. (13) and (19). In 
the terminology of the closed-string literature [12], the analysis of these proceedings is restricted 
to the analytic dependence of the one-loop amplitudes on the kinematic invariants. 
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• The association of 1 < i < j with eqs. (45) and (46) is adapted to an integration 
region where 0 < x2 < x3 < x4 < 1. The non-planar integrals I123|4 and I12|34, 
however, additionally involve situations where x j > x j+1. Still, the cubical in-
tegration region x j=2,3,4 ∈ (0, 1) of I123|4 and I12|34 can be decomposed into six 
simplices 0 < xi < x j < xk < 1 with some permutations (i, j,k) of (2,3,4). Each 
of these simplicial contributions in turn can then be reduced to the situation where 
0 < x2 < x3 < x4 < 1 by simultaneous relabeling of the integration variables and 
the Mandelstam variables si j. 

Further details and examples of this rather technical procedure can be found in 
refs. [4, 6, 11]. For the purpose of these proceedings, let us just note that all inte-
grals resulting from the α 0-expansion of the integrand in eq. (42) can be treated in 
this way; thus integration using eq. (30) is possible. 

Since the upper limit for the outermost integration in each term of eq. (42) is 
x j = 1, the elliptic iterated integrals in the α 0-expansions ultimately boil down to 
teMZVs eq. (31). Once the punctures x2,x3, x4 are all integrated out, the leftover 
shifts b j can take the values 0 and τ/2. In the planar case I1234 with all integrations 
on the same boundary, there are no shifts; thus the α 0-expansions are manifestly 
expressible in terms of untwisted eMZVs eq. (32). 

Note that the representation of the Green function used in the frst discussion of 
the planar case [4] did not involve the subtraction of ω(1, 0) in eqs. (43) and (45). 
As a virtue of the Green function P(xi j,q) including −ω(1,0), divergent eMZVs 
ω(1, . . .) or ω(. . . ,1) (cf. the discussion prior to section 3.1) automatically cancel 
from the α 0-expansion along with each monomial in the si j. In other words, short-
distance fniteness of the integrals is manifest term by term7 without further use of 
momentum conservation. 

Finally, the expansion of the non-planar integrals benefts from the particularR 1choice of Green functions in eqs. (43) and (44): The vanishing of 0 dxP(x,q) andR 1 
0 dxQ(x,q) [11] systematically bypasses various spurious terms, which appear in 

intermediate steps when using the representation of Green functions from ref. [6]. 

4.2 Plain results 

Following the steps outlined in the previous section, the α 0-expansion of the integral 
I1234 for the planar four-point cylinder amplitude eq. (13) can be brought into the 
following form [4] 

1
I1234(si j,q) = + 2ω(0, 1,0,0)s136 � �2 2+ 2ω(0,1,1,0,0) s12 + s23 − 2ω(0,1, 0,1,0)s12s23 (48) 

7 For instance, the contributions s12P(x12,q) and s13P(x13,q) from the exponentials in the rep-
resentation eq. (42) of I1234(si j,q) integrate to ω(1,0,0,0) − 1 

ω(1,0) = − 1 
ω(0,1,0,0) and6 3 

2
ω(1,0,0,0)+ ω(0,1,0,0) − 16 ω(1,0) = ω(0,1,0,0), respectively. 3 
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3 2 2 3+ β5 (s12+2s12s23+2s12s23+s23) − β2,3 s12s23s13 + O(α 04) , 

where we have used the following shorthands for the third order in α 0 

4 � � 
β5 = ω(0,0,1, 0,0,2)+ ω(0,1,1, 0,1,0) − ω(2,0,1, 0,0,0) − ζ2 ω(0,1,0,0)

3 
ζ3 8ζ2 5

β2,3 = + ω(0,1,0,0) − ω(0,3,0,0) . (49)
12 3 18 

In the non-planar four-point integrals of eq. (13), the teMZVs obtained in interme-
diate steps are found to cancel by employing the canonical representation in terms 
of iterated Eisenstein integrals. With two punctures on each boundary, the cancella-
tions of teMZVs in 

s12 
�7ζ2 

� � 
ζ2 

� 
− 2q 4 I12|34(si j,q) = 1 + s + 2ω(0,0,2) − 2s13s23 + ω(0,0,2) (50)12 6 3� 5 ζ3 

� 
3− 4ζ2ω(0, 1,0,0)s12 + s12s13s23 ω(0,3,0, 0)+ 4ζ2ω(0,1,0,0) − + O(α 04)

3 2 

are guaranteed to extend to all orders in α 0 by the factorization argument in sec-
tion 4.3.5 of [6]. The other non-planar topology with three punctures on the same 
boundary exhibits the same kinds of cancellations [6] � 7ζ2 

� 
2 2I123|4(si j,q) = 1+(s12 + s12s23 + s23) + 2ω(0,0,2) (51)

6� �5 ζ3− s12s23s13 4ζ2ω(0,1,0,0) − ω(0,3,0,0)+ + O(α 04)
3 2 

which might have an all-order explanation from the monodromy relations [34–36] 
among one-loop open-string amplitudes. The above results have been checked to 
reproduce the degeneration limits q → 0 known from the literature, i.e. the zero’th 
order in the q-expansions of I1234(si j,q), I123|4(si j, q) and q− 

s12
4 I12|34(si j,q) agrees 

with the expressions in refs. [37] and [35], respectively. 

4.3 Results in terms of iterated Eisenstein integrals 

In this section, we rewrite the above α 0-expansions in a canonical form by convert-
ing the eMZVs to a basis of iterated Eisenstein integrals (38). The planar integral 
eq. (48) then takes the form 

1 3s13 � � � 
ζ2 

� 
2 2I1234(si j,q) = + ζ3 − 6E0(4,0,0;q) +(s12+s12s23+s23) −2E0(4,0;q)

6 2π2 6� �1 2 2 ζ4 
+ (s 60E0(6,0, 0,0;q) −12 + 4s12s23 + s23)

π2 2 
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+ s12s13s23 2E0(4,0,0;q)+ 50E0(6,0,0;q) − (52)

12�1 3 2 2 3+ (s 12s23+2s12s23+s 216E0(4,0,4,0,0;q)+ 648E0(4,4,0,0,0;q)12+2s 23)
π2 

3 
+ E0(4,0,0,0,0;q) − 108E0(4,0;q)E0(4,0,0;q)+ 2016E0(8,0,0,0, 0;q)

5 �5ζ5 
+ 18E0(4, 0;q)ζ3 − + O(α 04) ,

2 

where the third order in α 0 exhibits integrals E0(4,4,0,0,0;q) and E0(4,0,4, 0,0;q) 
of depth two. The non-planar integral eq. (50) in turn contains shorter eMZVs and 
iterated Eisenstein integrals at the orders under consideration, cf. eq. (41), 

s12 
� 

ζ2 
� 

− 2q 4 I12|34(si j,q) = 1+ s12 − 12E0(4, 0;q) + 12s13s23E0(4, 0;q) (53)
2� � � � 

3 ζ3 
+ s12 3E0(4,0,0;q) − + s12s13s23 300E0(6, 0,0;q) − 3E0(4,0,0;q) + O(α 04) ,

2 

and a similar structure can be found for eq. (51): � 
ζ2 

� 
2 2I123|4(si j,q) = 1+(s12 + s12s23 + s23) − 12E0(4,0;q) (54)

2� � 
+ s12s23s13 300E0(6,0,0;q)+ 3E0(4,0, 0;q) − ζ3 + O(α 04) . 

Note that the α 0-expansions of both non-planar integrals q− 
s12
4 I12|34(si j,q) and 

I123|4(si j,q) take a form very similar to the symmetrized version of the planar in-
tegral eq. (52): � � 

2 2I1234(si j,q)+ perm(2,3,4) = 1+(s12 + s12s23 + s23) ζ2 − 12E0(4,0;q) (55) � �5ζ3 
+ s12s23s13 12E0(4,0, 0;q)+ 300E0(6, 0,0;q) − + O(α 04) .

2 

In fact, taking the differences between eq. (55) and eq. (53) or (54), they are 
proportional to ζ2, which might become visible only after using relations like 
ζ2 ω(0,1,0,0) = ζ 

8
3 − 34 E0(4,0, 0). This observation is related to the expectation on 

the corresponding closed-string integral [12, 13] to follow from open-string quanti-
ties under a suitably chosen single-valued projection: The agreement of eq. (55) and 
eq. (53) or (54) modulo ζ2 is argued in ref. [11] to pave the way towards a tentative 
single-valued projection for eMZVs. 

While there is no bottleneck in obtaining higher orders in α 0 from the same meth-
ods, it would be desirable to construct cylinder integrals directly from the elliptic as-
sociators [38]. This would generalize the representations of disk integrals in terms 
of the Drinfeld associator [39] and should explain the patterns of iterated Eisenstein 
integrals in the above equations. 
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5 Five-point results in different languages 

In this section, we discuss the applicability of the setup of teMZVs to string am-
plitudes of multiplicities higher than four. The main novelties for maximally super-
symmetric amplitudes at n ≥ 5 points are kinematic poles of the worldsheet integrals 
and higher-dimensional bases of tensor structures for the external polarizations. The 
appearance of both of these features are captured by the subsequent discussion of 
fve-point one-loop amplitudes of the open superstring. 

We will focus on the α 0-expansion of the prototype integrals in eq. (20) to (23) 
which are more conveniently written in terms of the propagators in eq. (43) to (46), 

Z 1 � 4 Z xl+1 � 
δ (x1) f 

(1) 
12 exp 

� 5 

∑

� 
si jP(xi j) (56)H12 

12345(si j,q) = dx5 ∏ dxl 
0 0l=1 i< j Z 1 � 4 Z xl+1 � � 5 � 

δ (x1) f 
(1) 
13Hb13 

12345(si j,q) = ∏ ∑dx5 dxl si jP(xi j) (57)exp 
0 0l=1 i< j � 5 Z 1 �Z x3 

Z x2s45 
dx1 δ (x1) f 

(1) 
12H12 

123|45(si j,q) = q ∏ dxl dx2 (58)4 

0 0 0l=3 � 3 � 
∑ 
i j< 

si jP(xi j)+ s45P(x45)+ ∑ si jQ(xi j)× exp 
i=1,2,3 
j=4,5 Z 1 �Z x3 

Z� 5 

∏ 
x2s45 

4 dx1 δ (x1) f 
(1) 
14Hb14 

123|45(si j,q) = q dxl dx2 (59) 
0 0 0l=3 � 3 � 

× exp ∑ si jP(xi j)+ s45P(x45)+ ∑ si jQ(xi j) . 
i< j i=1,2,3 

j=4,5 

5.1 Kinematic poles 

When reproducing feld-theory amplitudes from the α 0 → 0 limit of string theories, 
Feynman propagators arise from the boundaries of the moduli spaces. For instance, 
the s-channel pole in a four-point open-string tree amplitude arises from the region 
in the disk integral Z 1 dz2 1s12 (1− z2)

s23z = + O(α 0) , (60)2
0 z2 s12 

where the puncture z2 collides with z1 = 0. Since the emergence of kinematic poles 
s−1 is solely dictated by local properties of the worldsheet and the short-distance be-i j 
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havior of the Green function, the pole structure of loop amplitudes can be analyzed 
by the same methods as their tree-level counterparts8. 

In contrast to the one-loop four-point integrands, the prototype integrals at fve 
points in eq. (56) to (59) exhibit additional factors of fi j 

(1) with 

1
f (1) = + O(|zi − z j|) (61)i j zi − z j 

which modify the singularity structure at the boundary of the moduli space. In par-
ticular, the worldsheet singularities of f12 

(1)es12P(x12) translate into kinematic poles 
∼ s12 

−1 in the fve-point one-loop integrals eqs. (56) and (58) along the lines of the 
tree-level mechanism in eq. (60). As a convenient way of capturing the α 0-expansion 
of such singular integrals, we split the integrand of H12 

12345 in eq. (56) as � � 
f (1) ∑i 

5 
< j si j P(xi j) f (1) s12P(x2)e = e Φ(x2,x3,x4,x5) − Φ(0,x3,x4,x5)+ Φ(0,x3,x4,x5)12 12 � 5 5 � 

∑ s1lP(xl )+ ∑ 
2 i j≤ < 

si jP(xi j) , (62)Φ(x2,x3,x4,x5) = exp 
l=3 

where we remind the reader that we fxed x1 = 0. Then, for the last term of the 
frst line, the integral over x2 becomes elementary by recognizing f (1) es12P(x2) = 12 
− 1 ∂ es12P(x2) and leads to the following singular part of H12 

∂ x2 12345: 

Z 1 � 4 Z xl+1 � 

s12 

δ (x1) f 
(1) s12P(x2) Φ(0,x3,x4,x5)e12∏dx5 dxl (63)

0 0l=1 Z 1 Z Z � 5 5 �x5 x41
∑ ∑dx5 dx4 dx3 exp s12P(x3)+ (s1l +s2l )P(xl )+ si jP(xi j)= − . 

s12 0 0 0 l=3 3≤i< j 

The right-hand side of the equation above can in turn be identifed with the planar 
four-point integral in eq. (14) after relabeling the Mandelstam invariants as n s12 → s123 , s13 → s14+s24 , s14 → s15+s25

χ : (64)s23 → s34 , s24 → s35 , s34 → s45 

with s123 = s12+s13+s23. We have assumed s12 to have a positive real part in dis-
carding the boundary term es12P(x2) 

x2=0 in eq. (63) which exhibits the same short-
distance behavior xs12 as seen in the tree-level integrand eq. (60). Hence, the integral 2 
eq. (20) can be split into a pole part and a regular part according to 

H12 I1234(χ(si j),q) 
12345 = H12,reg (65)12345 − 

s12 

8 See [40, 41] for two related approaches to treat the poles of n-point open-string tree amplitudes. 
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H12,reg 

12345 ∏ f (1)(x2)es12P(x2) Φ(0,x3,x4,x5) − Φ(x2,x3,x4,x5)= dx5 dxl . 
0 0l=2 

In reconstructing the α 0-expansion of the polar part from a four-point computation, 
the Mandelstam invariants of I1234 have to be transformed according to eq. (64) 
instead of using four-point momentum conservation eq. (15). This is the reason for 
obtaining 

I1234(χ(si j),q) = 
1 
+ ω(0,1,0,0)(s12 − 2s34 − 2s45) (66)

6 
2 2 2+ ω(0,1, 1,0,0)(s12−2s12s34+2s34+2s45)+ ω(0,1,0, 1,0)(s12−2s34)s45 + O(α 03) 

instead of eq. (48) after using fve-point momentum conservation eq. (25). The non-
planar integral H12 with a kinematic pole defned in eq. (58) will be addressed 123|45 
by a similar decomposition of the integrand as in eq. (62) 

f (1) ∑
5 

f (1) 
� � 

i< j si j P(xi j) s12P(x2)e = e Ψ (x2,x3,x4,x5) −Ψ (0,x3, x4, x5)+Ψ(0,x3,x4,x5)12 12 � � 
∑ 
i j( )= , 

si jP(xi j)+ ∑ s1 jQ(x j)+ ∑Ψ (x2,x3,x4,x5) = exp s13P(x3)+ si jQ(xi j) . 
j=4,5 i=2,3 

j=4,5(2,3),(4,5) 

−123 45|� 5 

∏ 

(67) 

Again, one can fnd a primitive w.r.t. x2 for the last term in the frst line and arrive at 
a decomposition analogous to eq. (65) 

H12 I12|34(χ(si j), q) 
123|45 = H12,reg (68)

s12 Z 1 �Z x3 � �s45
H12,reg dx2 f (1)(x2)es12P(x2)dxl Ψ(0,x3,x4,x5) −Ψ (x2,x3,x4,x5)4 ,123|45 = q 

0 0l=3 

with the same mapping eq. (64) of the Mandelstam invariants that governed the 
planar counterpart H12 

12345. The function I12|34(χ(si j),q) of fve-particle Mandelstam 
invariants along with s12 

−1 is still expressible in terms of untwisted eMZVs, n � �s45 2 5ζ2I12|34(χ(si j),q) = q 4 1 + s45 ω(0,0,2)+ (69)
6 �� � o1� 2 2 ζ2 

+ (s14 + s24)
2 +(s15 + s25)

2 + s34 + s35 ω(0,0,2)+ + O(α 03) ,
2 3 

see eq. (53) for the analogous four-point expansion. 
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5.2 The regular parts 

For the regular parts H12345
12,reg and H12,reg of the fve-point integrals over f (1) defned123|45 12 

in eqs. (65) and (68), the integrands 

5 � � 
1

Φ(0,x3,x4,x5) − Φ(x2,x3,x4,x5) = − ∑ s2 j Γ x j ;x2 + O(α 02) 
j=3 � �� �1 1

Ψ(0,x3,x4,x5) −Ψ (x2,x3,x4,x5) = −s23 Γ x3
;x2 − s24 Γ x4+τ/2 ;x2 (70) � � 

1− s25 Γ x5+τ/2 ;x2 + O(α 02) 

manifestly vanish as x2 → 0. Hence, they cancel the singularity of the integrands 
f (1)(x2) in eqs. (65) and (68), and the integrations over x3,x4,x5 yield convergent 
eMZVs at all orders, starting with9 

H12,reg � 
ω(0,1,0,1,0)+ 2ω(0,1,1,0,0) 

� 
+ O(α 02) (71)12345 = (s23 − s25) 

H12,reg (72)123|45 = O(α 02) . 

The leading three orders in the low-energy expansion of the planar integral H12 
12345 

can then be assembled by inserting eqs. (66) and (71) into eq. (65). Likewise, the 
non-planar integral H12 

123|45 follows from plugging eqs. (69) and (72) into eq. (68). 
The kinematic poles of the integrals H12 only arise because the 12345 and H12 

123|45 
−1variables x1 and x2 of the worldsheet singularity f (1) ∼ x are neighbors in the 12 12 

H13integration domain 0 < x2 < x3 < x4 < x5 < 1. In contrast, the integrals b 
12345 and 

H14b in eqs. (57) and (59), do not acquire any kinematic pole in this way. Ac-123|45 
cordingly, Taylor expanding the exponentials in the integrand automatically yields 
convergent eMZVs order by order in α 0 upon integration over x2,x3,x4,x5, e.g. 

H13b
12345 = −ω(0,1,0,0)+(s12 + s23 + s45)ω(0,1, 1,0,0) (73) 

+(s12 − s15 + s23 − s34 − s45)ω(0,1,0,1,0)+ O(α 02) n � � o 
H14 s45 ζ2b

123|45 = q 4 (s24 − s34) ω(0,0,2)+ + O(α 02) . (74)
3 

Note that to the orders considered, the α 0-expansions of the fve-point integrals can 
be easily confrmed to preserve the integration-by-parts relations 

9 The convergent integrals leading to eq. (72) can be performed via rearrangements such as [4]� � � � � �
1 1 0 2 2 0Γ 0 z ;z = −2Γ 0 0 ;z −Γ 0 0 ;z −ζ2, which is yet another example from the class of identities 

discussed around eq. (47). Note that the singular integration kernels f (1) manifestly drop out from 
this identity. 
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∂ � si j 

� 
2 G(zi j)∏ ∏δ (z1)dz j (75)exp = 

∂ z2j=1
D(λ ) Z 5 

i< j 

� 5 

D(λ ) 

beling of one of the prototype integrals in eq. (56) to (59). It does not require much 

∏ 
i jj 1 <= 

Such relations crucial for manifesting the gauge invariance of the string ampli-are 
λtude. They do not depend the planar non-planar ordering in the integration on or 

λregion D cf. eq. (6). Each of the summands in eq. (75) is expressible rela-( ) as a, 

effort to show that non-planar integrals with a domain of the form D 1 2 3 4 5|( ) can, , , 

Given the low-energy expansion of all the permutation-inequivalent prototype inte-

be expanded using the same methods. 

5.3 Putting everything together 

grals eq. (56) to (59), one can expand the fve-point cylinder amplitude eq. (19) at 
the level of the integrand w.r.t. q: The coeffcients Iρ(2,3)

(si j,q) of the independent 
λ 

kinematic factors Atree 
SYM(1,ρ(2,3),4,5) with permutation ρ ∈ S2 are linear combi-

Hi j nations of the Hi j and b implicitly defned by combining eqs. (16) and (18) with 
λ λ 

BCJ relations of the Atree 
SYM. 

Also the fve-point tree amplitudes of the open superstring can be expanded in a 
BCJ basis of (super-)Yang–Mills amplitudes [42]: When considering the two single-
trace orderings Atree (1,τ(2,3), 4,5) of disk amplitudes, the relation to their feld-open 
theory counterparts Atree ρ andSYM(1, ρ(2,3),4, 5) is encoded in 2 × 2 matrices (Pw)τ 

(Mw)τ
ρ indexed by the permutations τ, ρ ∈ S2 [43], 

� � si j 
� 

s23 f23 
(1)
+s24 f24 

(1)
+s25 f25 

(1)−s12 f12 
(1)

∏ dz j δ (z1) G(zi j)exp = .2 

Atree 
open(1,τ(2,3),4, 5) = ∑

ρ(1 + ζ2P2 + ζ3M3 + ζ2
2P4 + O(α 05))τ 

ρ∈S2 

× Atree 
SYM(1,ρ(2,3),4,5) . (76) 

The entries of the 2 × 2 matrices Pw and Mw are degree-w polynomials in si j with 
rational coeffcients, e.g. � � s12s34 − s34s45 − s51s12 s13s24P2 = , (77)s12s34 s13s24 − s24s45 − s51s13 

and analogous expressions for matrices at higher order in α 0 or multiplicity can be 
downloaded from [44]. 

The same matrices P2,M3,P4 governing the low-energy expansion of tree ampli-
tudes eq. (76) can be found in the planar sector at one loop: It is convenient to focus 
on the two choices λ = 1,2,3,4,5 and λ = 1,3,2,4,5 of the single-trace ordering 
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which line up with the basis Atree 
SYM(1, ρ(2,3),4,5) of kinematic factors in eq. (19). 

H13Doing so, the α 0-expansions of the planar integrals H12 
12345 uplift the re-12345 and b 

lation eq. (76) between open-string and (super-)Yang–Mills tree-level amplitudes to 
one loop Z 1 

ρ (si j,q)AtreeAcyl(1,τ(2,3),4,5) = 
0

d 
q
q 

∑ I1τ(23)45 SYM(1,ρ(2,3),4,5) (78) 
ρ∈S2 

with the leading low-energy orders [4] 

1 � 3ζ3 9E0(4,0,0;q)� 
−I1τ(23)45 

ρ (si j,q) = P2 + − M36 2π2 π2 � 
π2 150 � 

+ − 5E0(4,0;q)+ E0(6,0,0,0;q) P4 (79)
18 π2 � 3 � 

+ E0(4,0;q) − 
225 

E0(6,0,0,0;q) L4 + O(α 05) .
2 π2 

At order α 04, we encounter a new matrix L4 with entries 

23 2 2 2 2 2 2 2(L4)23 = s 12s23s24 + s 12s23s34 + 2s12s13s23s34 + 2s12s12s23 + 2s 12s24 + 2s 23s34 
2 2 2 2+ 2s12s24s34 + s12s13s24s34 + 2s12s23s24s34 + s 34 + 2s12s13s12s 34 

2 2 2 2 2 2+ s13s34 + 2s12s23s34 + 2s13s23s34 + s23s34 (80) 

(L4)23
32 = −s13s24(3s12s23 + s13s23 + s23

2 + 2s12s24 + s13s24 + s23s24 

+ 3s12s34 + 2s13s34 + 3s23s34) (81) 

32 23 23 32and (L4)32 = (L4)23 2↔3 as well as (L4)32 = (L4)23 2↔3. The q-expansion 
of its coeffcient does not have any zero mode, consistent with the fact that the q0 

order of eq. (79) has to match the α 0-derivative of the tree-level amplitude [37]. 
Cylinder diagrams as drawn in fgure 1 can be interpreted not only as a one-loop 

process involving open strings but also as a tree-level exchange of closed strings 
[16]. In particular, the non-planar cylinder diagram gives rise to a propagator ∼ s−1 

12 
of gravitational states upon integration over q. Accordingly, the low-energy limit 
of double-trace open-string amplitudes at one loop reproduces the corresponding 
double-trace amplitudes in Einstein–Yang–Mills feld theory [45] 

Atree 
SYM(1,3,2,4, 5) − s34Atree 

EYM(1,2,3|4,5) = s24Atree 
SYM(1,3,2,4,5) . (82) 

H14Indeed, the α 0-expansions of the non-planar integrals H12 & b give rise to 123|45 123|45 Z 1 n1 dq s45 
s45 AtreeAcyl(1,2,3|4,5) = − q 4 EYM(1,2,3|4,5)

2 0 q� 
ζ2 

� 
3 
45 A

tree+ − 12E0(4,0;q) s EYM(1,2,3|4,5) (83)
2 

+ 12E0(4,0;q) 
� 

s34(s12s23s45+2s12s24s45+s45s34
2 +s45

2 s34+3s12s24s15) 
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+ O(α 05)× Atree 

SYM(1,2,3,4,5) − (2 ↔ 3) 

and match the desired Einstein–Yang–Mills limit eq. (82) by means of the integral R 1 s45 
0 dq q 4 −1 = 4 at the leading order. It would be interesting to explore the higher-s45 

order structure of the α 0-expansion at one loop, in particular, if it exhibits an echo 
of the tree-level pattern of refs. [43, 46] under the motivic coaction. 

6 Summary 

In these proceedings, we investigate the appearance of eMZVs in one-loop ampli-
tudes of the open superstring. In reviewing earlier results on the planar [4] and non-
planar cylinder diagram [6], we streamline intermediate steps of the computations 
provided in the references, thus allowing a more effcient calculation. We extend 
their results in two directions: First, the treatment of kinematic poles in planar and 
non-planar fve-point integrals is carefully explained. Second, the fnal expressions 
for the low-energy expansions at four and fve points are cast into the language of 
iterated Eisenstein integrals. 
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