Continuum Mechanics in Geophysics

5 credits

Syllabus, Master's level, 1GE048

A revised version of the syllabus is available.
Code
1GE048
Education cycle
Second cycle
Main field(s) of study and in-depth level
Earth Science A1N, Physics A1N
Grading system
Fail (U), Pass (3), Pass with credit (4), Pass with distinction (5)
Finalised by
The Faculty Board of Science and Technology, 12 March 2015
Responsible department
Department of Earth Sciences

Entry requirements

120 credits including 75 credits in physics and mathematics.

Learning outcomes

After successful completion of the course, the student is expected to be able to:

  • Write down and apply the conservation equations of momentum, energy, and mass in continuum form.
  • Describe conceptually and in equations the fundamentally different types of material behaviour (rheologies).
  • Formulate and solve a complete set of dynamical equations.
  • Find the principal orientations and values of the tensor fields of stress and strain.
  • Derive the Navier-Stokes equation from the conservation equations and a viscous rheology and apply it to fluid mechanics problems.
  • Derive the seismic wave equations and solve the equations for simple systems.

Content

Continuum hypothesis. Stress tensor, pressure and deviatoric stresses. Eigenvectors and eigenvalues. Conservation of linear momentum. Conservation of angular momentum and symmetry of the stress tensor. Strain tensor and displacement gradient tensor. Stress and strain invariants. Isotropic elasticity. Airy stress function. Heat transfer and conservation of energy. Compressibility and the mantle adiabat. Newtonian fluids, Navier-Stokes equation. Eulerian vs. Lagrangian description and concept of advection. Conservation of mass. Scaling, dynamic similarity, Reynolds- and Rayleigh number. The stream function. Non-Newtonian viscosity, plasticity, and visco-elasticity.

Instruction

Lectures, homework, exercise sessions.

Assessment

Written examination (4 credits) and homework assignments (1 credit).

FOLLOW UPPSALA UNIVERSITY ON

facebook
instagram
twitter
youtube
linkedin